&Q}ESTIQ)JO . Meccanica dei Materiali e delle Strutture
, 4’% UNIVERSITA Vol. VI (2016), no.1, pp. 66-73
N < ISSN: 2035-679X
gﬂ 5 DEGLI STUDI Dipartimento di Ingegneria Civile, Ambientale, Agpagiale, Dei Materiali
€ & DI PALERMO DICAM
2 »
Zopg gt

GALERKIN SCHEME BASED DETERMINATION OF FIRST-
PASSAGE PROBABILITY OF BILINEAR SYSTEM WITH
FRACTIONAL DERIVATIVE ELEMENT

T T

P.D. Spanog, A. Di Matteo’ and A. Pirrotta

’ Department of Mechanical Engineering and Matelsgi®nce
Rice University
6100 Main street, Houston, TX, USA
e-mail: spanos@rice.edu
" Dipartimento di Ingegneria Civile, Ambientale, Aspaziale, dei Materiali (DICAM)
Universita degli Studi di Palermo
Viale delle Scienze, 90128 Palermo, Italy
e-mail: alberto.dimatteo@unipa.it

Key words: Bilinear system, First-passage probability, Faclalerivative.

Abstract. In this paper an approximate analytical technique is developed for determining the
first-passage probability of randomly excited nonlinear hysteretic oscillator endowed with
fractional derivatives elements. The amplitude of the system response is modeled as one-
dimensional Markov process relying on a combination of stochastic averaging and statistical
linearization technique. This yields the backward Kolmogorov equation which governs the
evolution of the survival probability of the oscillator. An approximate solution of this
equation is derived by resorting to a Galerkin approach. Specifically a convenient set of
confluent hypergeometric functions, related to the corresponding linear oscillator with
integer order derivatives, is used as orthogonal basis for this scheme. Application to the
bilinear oscillator is presented. Comparison with pertinent Monte Carlo simulations
demonstrates the accuracy of the proposed approximate analytical solution.

1 INTRODUCTION

In dealing with the response determination of ¢etits comprising fractional terms and
subjected to stochastic excitations, a relevartilpro, of high engineering interest, pertains to
the so-called survival probability of the systeimattis, the probability that its response will
not reach a certain barrier over a given time wuakrSeveral research efforts have then
focused in the past decades on this topic, oratserpart known as first-passage problem,
that is the probability the system response reatiegrescribed barrier for the first time.
Readers may refer’téor further details on recent approaches to addtgs problem.

In this regard, it is noted that the great majoafyexisting approaches for determining the
first-passage probability consider systems wittyanleger order derivatives, while the first-
passage problem of systems with fractional desreaglements is much less addressed.
Specifically, irf the first-passage failure of fractional SDOF noedr systems under
Gaussian white noise is solved through stochastcaging method, while frthis technique
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is adopted to deal with fractional derivative systewith power-form nonlinear restoring
force.

In this paper a combination of stochastic averagimg) statistical linearization is employed to
yield a first order stochastic differential equatigoverning the response envelope of the
original nonlinear oscillator with fractional deative terms. In this way the backward
Kolmogorov (BK) equation that governs the evolutmthe survival probability is restored.
An approximate solution of this equation is then\asl through a Galerkin scheme approach,
based on the orthogonality properties of the camfithypergeometric functiofi$ Further,
pertinent Monte Carlo simulation results are usedssess the accuracy of the proposed
procedure. Results shows that the herein develGaderkin based approach may represent a
convenient alternative for determining the survipalbability of linear and nonlinear systems
with fractional derivatives elements, efficientlydawith a satisfactory degree of accuracy.

2 MATHEMATICAL FORMUALATION

2.1 Markovian model of response amplitude

Consider a nonlinear single degree of freedom lasoil with fractional derivative
elements, whose motion is governed by the follovdiffgrential equation

%(t)+C, ( 5D7X) (t) +2(t.x %) =w(t) (1)

where a dot over a variable denotes differentiatidtih respect to time; C, is a constant
which can be viewed as a damping coefficienta#X), or as a stiffness coefficien&£0);

z(t,x, x) is an arbitrary nonlinear function of the respodsplacement and velocity(t) is

a zero mean Gaussian white noise process of pgweetral densitys, and (th”x) (t) is as
a-order Caputo fractional derivative defined as

oy 1 px(t-=7)
(th X)(t)_r(l—a)J; = dr, O<a<l1 2)
in which I (JJ is the Gamma function.

Further Eq. (1) can equivalently be written as

%(t)+ B, x(t) + z(t, x,X) +h[ x(t), %(t) ] = w(t) 3)
where h[ x(t), x(t) ]=C, (5D7x)(t) - Bx(t) .

and B, =2{,w, is an arbitrary chosen value of linear dampingffament, being « the
natural frequency of the corresponding linear teat and {, <1 the ratio of critical
damping.

In this way, the term containing the fractionalidative h[ x(t),x(t)] can be assumed as a

perturbation (not necessarily small) of an equivatenlinear perfectly viscoelastic system.
Assuming that{, <1 andS is O({p), it can be argued that the solution of Eq. (J)ikits a

pseudo-harmonic behavior, described by the follgvitansformations of variables
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cos[a) A)t+0(t ]

( )——A( )ew(A)sin] w(A)t+6(t) |

where the amplitudé(t) and phasé(t) are assumed to be slowly varying functions of time
and the terrm)( A) denotes an "effective" angular frequency of theteay.

Squaring and summing both sides of Egs. (4) yields

(4)

A(t) { 2 (t)+ a)j:((;))}; ()

Next, following a statistical linearization apprdaé a linearized counterpart of Eq. (3) can
be given as

%(t)+ B(A)X(t) + 7 (A)x(t) +h[x(t). x(t) ] = w(t) ©)

where the equivalent dampingf(A) and natural frequencys(A) are assumed to be

functions of the response amplitth), to account for the effect of the nonlinearity.

Performing a mean square minimization proceduréhererror between Eqgs. (3) and (6), the
approximate expressions fof(A) and w(A) can be determined, assuming that the
amplitude and phase remain constant over one pefioscillation. That is

B(A) =4~ Aw(A) jz[Acosqp—Aw(A) sww} sipdg (7)
and
af(A):ﬂiATz[Acosqp— Aw(A) sinp| cogdg (8)

where ¢(t) = w( A)t +6(t).
Further differentiating Eq. (5) with respect to érand taking into account Eqgs. (4), yields

A== o)L AL O AN S g Mg
A major task in solving Eq. (9) is related to thepQto fractional derivative in terms of
amplitude and phase which appears in the tlaErA(t)cosqo(t) ~A(t) w, (A) sirw(t)]
However, following the derivations reported’,inthis problem can be circumvented.

Specifically, relying on the assumption of lightng@ing and utilizing a combination of
deterministic and stochastic averaging, approxirdat®upling the amplitude from the phase

is achieved; the amplitudA(t) is modeled as a one-dimensional Markov processrged
by the differential equation

9)
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. 1
Alt)= - B(A) At) +m +h(A) A(t) +%q(t) (10)
where h(A):%_ZwETa(A)Sin%T’ and 77(t) is a unitary intensity zero mean delta

correlated stationary random process.

2.2 Backward Kolmogorov equation
Introducing the dimensionless variable

(11)

Eqg. (10) can be rewritten in the form

1 X% NS

/i(t)=—{[§ﬁ(2\)—ﬁ(ﬂ)}ﬂ(t)—zﬂ(t) wz(a_s,:)} B

where o, represents the stationary standard deviation eflitrear perfectly viscoelastic
oscillator and

h({A 0 Ca i

(A= 55 5 (0.A) sin 13)
o S(g.A
A= g+ 2 (14)

° oAw(oA)

Denoted byP,(a,t) the survival probability ofA(t), that is, the probability thai\(t)
starting from an initial valu@a never reaches the barri& during the intervalQ,t]. Then,
based on the Markovian approximation Aft), it can be proved thak, (a,t) satisfies the
following backward Kolmogorov (BK) equation

401 Bt sl 7

Taking into account the physics of the problem,ftil®wing initial and boundary conditions
are imposed

R(B.t)=0 (16)
R, (0,t) = finite

Meccanica dei Materiali e delle Strutture | VI (2016), 1, PP. 66-73 69



P.D. Spanos, A. Di Matteo and A. Pirrotta.

3 GALERKIN FORMULATION

As shown ifi, the BK equations corresponding to a linear astitl with integer order
derivatives ¢—1), along with the boundary conditions Egs. (17ade to a boundary value
problem, which can be recast as a Sturm-Liouvitie.o

Let the variablesA ; and d)i’B[E,/]i’B] denote respectively thigh eigenvalue and the

corresponding eigenfunction of the associated Stuouville problem of the corresponding
linear oscillator with integer order derivatives+$1). As shown ifi, theith eigenfunction can
be found as

D 5[ EAg|=M[-A 5 LE] (17)

where E :%az, and M ([)] is the Krommer confluent hypergeometric function

The corresponding eigenvalag is the solution of the equation
BZ
M {—ALB,L7} =0 (18)

Based on the properties of the eigenfunctiah&[E,)li’B], an important orthogonality
condition has also been derived as

BZ

fq:i,B[E,Ai,B]qnjB[E,ALB]e—EdE:o, i # (19)
0

Note that eigenvalued ; in Eq. (18) have already been derived and tabififte several

values of the barrieB.
The availability of the eigenvaluesl; and the orthogonality of the eigenfunctions

® 5[ E.Ag] Edg. (17), suggested the use of this set of funstias a basis of a Galerkin

scheme, for the determination of the survival phildgt of nonlinear systems without
fractional derivative elemerits

Here the same procedure is applied and extendedpe with nonlinear hysteretic systems
endowed with fractional derivative elements.

Following the approach i it can be argued that a solution of the BK equefig. (15),
could be obtained by a Galerkin technique, usirggahmeady known eigenfunctions for the
case, tabulated §rfor several values of the barriBr Specifically, an approximate solution of
Eqg. (15) is sought in the form

Py (at) =36 (t) ®.[ EAs ] (20)

wherec (t) are functions of time to be determined &hi$ an integer number which denotes

the truncation limit of the series expansion.
Once eigenvalued ; for the chosen value of the barri2are obtained from the tables ior

from Eq. (18), eigenfunction@i'B[E,ALB] can be directly determined through Eqg. (17).
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Thus, through this method, only functionﬁ(t) have to be determined in Eqg. (20) for the

solution of the problem Eq. (15). Specifically, g henceforth the dependence of the
various variables and substituting Eq. (20) into @) yields

N _ 1—_— B ,Boag N dCDiYB ﬁoa)g N d%d
24P, = {[2'8 h}a Zaaf(a)}zc' da +(2a)2JZ;‘C' da

i=1 i=1 i=

(21)

Following the approach frand taking into account the orthogonality conditiq. (19), Eq.
(21) yields the linear system

¢(t) =ye(t) (22)
wherec(t) =[ ¢ (t)...c, (t)]T, while ¥ is a(N x N) matrix whose elements are given by
EBZ }BZ _ _
=_—ﬂ0 /12 g(b ® e dE 2 E —i B _2h d¢j'B¢ 5,
&, e jj;wz 8Pis€ "'J; wz"',go 3, ) dE i 8€
[ ®reedE

0

(23)

As far as the initial conditions of Eq. (22) arencerned, applying a similar approach dsiin
can be proved that

q(o)zé(;z—; i=1,...,N (24)
2
[ ®eedE
0

Once Eq. (22), with the initial conditions in EQ4{, is solved, then the survival probability
PB(a,t) can simply be determined through Eq. (20), while torresponding first-passage
probability density function is obtained by usiig tequation

_dRy(at)

i (25)

Ps (a’t) -

4 NUMERICAL APPLICATION

In this section, the versatility and the accura¢ythe proposed procedure is assessed
considering the case of a single degree of freesigstem with a fractional derivative element
that exhibits hysteretic behavior of the bilinegpd. The motion of the aforementioned
system is governed by the differential equation

%(t)+Cy ( SDFX) (1) +a £[x(t), x(t)]=w(t) (26)
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where x(t) denotes the displacement relative respongeis the pre-yield natural frequency

and the function f[x(t),x(t)], representing the oscillator restoring force, coe
mathematically written as

fFIx(t), x(t)]=yx(t)+(1-y) %(t) (27)
In this equationygamma is the post-yield to pre-yield stiffnessdittity”) ratio, (e.g. the

value y =0 correspond to a perfectly elasto-plastic oscitlasmd zo(t) is an auxiliary state
variable governed by the differential equation

20(t) = X[ 1~ H (Q)H (20 =%, ) =H (~X) H (-0, ) (28)
where xyis the yielding displacement artdi () is the Heaviside step function.

Taking into account Egs. (9) and (10), the ampétdépendent equivalent dampitﬁ(A)
and natural frequencgo(A) are respectively

ﬂ(A):ﬁo+—(1;2(if)A); (A =y+ ENSA (29)
where
Al « 1 . 4 1
CO(A)= 7—7[6’ —Esm(ﬂ)] A>1; S(A)= 7_7( 1—2\) ,A> ] (30)
A, A<l 0, A<l

« 2

andcog @ |=1-—.
19)=+%
Following the procedure described in the previocetion, the coefficients of the matri¥

can be found, and Eqg. (22) can be solved. Thusstineival probability PB(a,t) can be
determined through Eq. (20), while the correspogdfitst-passage probability density
function pg (a,t) is obtained by using Eg. (25).

The Galerkin scheme formulation is applied to tiseil@ator in Eq. (26) possessing the

parameter value€, =0.05a = 0.4y, = 1x, = 0. and consideringg—s’ =1. A value of the

0
nonlinearity parametey = 0.8 is used, whileN =11 terms are used in the Galerkin scheme.

Oscillators are considered initially at rest, tisak(0) = 0,x( 0) = 0 and hencea =0.

In Fig. 1 Galerkin scheme-based survival probaegditand first-passage time PDFs for these
two values of the nonlinearity parameter are comgbawith pertinent MCS results.
Specifically, results for three different valuestioé barrieB are presented€0.5, 0.7, 1). As
shown in these figure, comparison to MCS data sheogsite good agreement.
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Figure 1. Galerkin scheme (lines) vis-a-vis MCSuhess(symbols) for the bilinear oscillator with=0.8:
a) Survival probability; b) First-passage probapitensity function

5 CONCLUDING REMARKS

The survival probability of a bilinear hysteretigstem with fractional derivatives element
under Gaussian white noise excitation has beenestudihe response amplitude envelope has
been modeled as a one-dimensional Markov procéss.his led to the associated backward
Kolmogorov (BK) equation ruling the evolution ofettsurvival probability. An approximate
solution of the BK equation has been pursued riegptd a Galerkin scheme. Specifically, the
available eigenfunctions of a corresponding lingstesm with integer order derivatives have
been used as basis of the Galerkin expansion. BedpGalerkin based survival probability
vis-a-vis pertinent Monte Carlo simulation data &aglemonstrated the accuracy and
reliability of the suggested procedure.
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