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Abstract.An extension of the classical spectral represeotatnethod for asymmetrically
non-Gaussian stochastic processes is proposedch@we this, new orthogonal increments
in the Cramér spectral representation are propogsich satisfy the necessary orthogonality
conditions up to 8 order. Two new quantities are defined to faciéitéte expansion, the pure
power spectrum and partial bicoherence, whicharedut decouple the wave components
into their individual and coupled contributions tlee process. The method is used tosimulate
time histories of the wind pressure coefficientaststent with wind tunnel test data such
thatthe estimated power spectrum and bispectruthefgenerated samplesconverge to the
empiricaltargetspectra respectively.

1 INTRODUCTION

Stochastic processesare widely applied to modetaman physical phenomenafrom
heterogeneous material structures to structuratagiams including wind and earthquake time
histories.Solving problems that involve these sastic models requires generation of
samples of stochastic processes. The accuracyesé ttealizations (i.e. their ability to match
the real properties of the random phenomenon)itisairto the credibility of the simulation-
based approaches. In general, simulation is masdgitge byexpandingthe process as a finite
sum

N
x(6,6) = ) Ci(O) E,(0) ®
i=1

where(;(08) are random variables (usually treated as indepgnhdadé;(t) are deterministic
basis functions.

The Spectral Representation Method [1,2,3] and W@eh-Loéve expansion [4,5] are the
most commonly employed expansionscorrespondindn¢ocases where the basis functions
are the harmonics and the eigenfunctions of thartance kernel, respectively.Both methods
typically treat the random variabl€g6) as independent with the result that the expanded
process can possess the correct properties ortly #forder, its covariance, and resulting in
an asymptotically Gaussian process. To overconsirtiiiation, nonlinear transformations
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are typically utilized to match the marginal nonuGsian PDF exactlyand match the
covariance function asclosely as possible [6]. R#gemethods for efficiently generating
thesetranslation processes have been developatht@nary [7,8] and non-stationary [9,10]
processes using the spectral representation metlaod the Karhunen-Loeve
expansion.Related methods have been developed lasisigg, for example, polynomial
chaos expansion based nonlinear transformatiorjsajid. schemes that iteratively update the
marginal densities of the independent random vkesabn Karhunen-Loéve expansion
[12,13], but these methodologies cannot match thymal non-Gaussian PDF exactly.

Though the aforementionedmethods generatesamptesttie correctnon-Gaussian
marginal probability densities and covariance, thmain inherently ®.order in their
correlation structure. In this regard, by derivimdpigher-order stochastic representation, the
correlation structure of the process,up tBoidler, will be directly incorporated into the
expansion. To achieve this, neworthogonal incrementhe Cramér spectral representation
[14] are proposed that satisfy orthogonal condgtiap to &-order.Along the way, we define
two new quantities referred to as the pure powectspm and partial bicoherence that
facilitate this expansion. We then apply the pr@gosxpansion for generation of skewed
wind pressure coefficient time histories consisteitih existing wind tunnel test data.

2 CUMULANTSAND POLYSPECTRA

Higher-order stochastic processes possess cergienies that can be described through
theirmoments and cumulants of various order. T jnpoment of order = k, + k, + -+
k,of a real random vectof = {x,, x,, --- x,,} are defined as [15,16,17]

10" P (wq, wy, , wy)
My ko kn = 77
k2., r k k k
U dwp 0w, e dwy

witwy+wyp=0
(2)
10" In®(wq,wy, -, wy)

Criky. ky — 57
12, r k k k
U dw 0w, dwy”

witwy+wy=0

where &(:) is characteristic function of random vectr Furthermore, lgf(t) be a real
stationary stochastic process with zero mean, tineutants of the process can be related to
the moments as

c{ = m{ =0, c{(r) = mg(r), céc(rl,rz) = mg(rl,rz)

c{(rl,rz,r3) = m{(rl, Ty, T3) — mg(rl)mg(rz - 1T3) 3)

—mJ (e )m} (v3 — 1,) = mJ (v3)md (7, — 1)

For Gaussian processes, the cumulants of ordeehighn twoare identically zero. Thus non-
zero cumulants provide one measure of deviatiom {Baussian.

The " order polyspectrum of a stationary stochastic gsecis defined as the Fourier
transform of the i order cumulant[15]
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CT)lC(a)ll.”'le—l) = W f eee J C;f(‘[l,"',‘L'n_l)e_l(w1T1+m+w"_1Tn_1)d‘l,'l ...dTn_l (4)

whereC (w4, -+, w,—1) IS, In general, complex. The classical power spettis the lowest
order polyspectrum defined as the Fourier transfofr@™ order cumulant. The bispectrum
can be expressed in terms of tffedder cumulantusing Eq. (4) as

5 (wy ;) = B(wy, w)) = % f J ¥ (1, 7;)e (@it @iy, dr; (5)
and represents certain asymmetric properties of@eunssian processes. In particular, the real
and imaginary parts of the bispectrum relate toskkmwvness of the stochastic process and its
derivative, respectively[18,19]. The skewness ofpinecess be obtained by integrating the
real parts of bispectrum, and the skewness of diviv of the processobtained by integrating
the imaginary components as

E[f(t)%] = f J RB(w;, w;)dw; dw
L. )
E [(%?) ] = J f IB(w;, w;)dw; dw
Lastly, the bispectrum can be expresse_d i;1 ternits afmplitude and biphase [20] as
B(w;, w;) = [B(w;, w;)|e @) (8)
where
B ) = tan~? %‘Zﬂ )

Polyspectra are hierarchical in nature, meaningahaeh higher-order spectrum contributes
to the lower-order spectra. To quantify the proporbf the power spectrum that derives from
the bispectrum, we define a partial bicoherenceacorresponding pure power spectrum as

1B(w;, w;)|?

2 —
bil 1) = 5 8, oSt ) (9
where
i2j=0
Sp@) = Sy 1= D by ;) (11)
i+j=k

The partial bicoherence isolates the fraction ofvgroin the wave with frequenay,that
results from interactions of the waves with frequen; andw; havingw; + w; = w,. The
partial bicoherence has the following property
i=j=0
0< Z b2(w;,w;) <1 12)

i+j=k
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where the summation considers the interactionlgbats of frequencies wit; + w; = wy
such thath};}’=} b2(w; w;) = 1 means that all power at frequeney arises from wave

interactions and}ﬁ’ji?( b2(w;, w;) = 0 means that no power comes from interactions.

3 SPECTRAL REPRESENTATION FOR HIGHER-ORDER PROCESSES

The Cramér spectral representation [14] expandsreergl zeromean, real stationary
processeg(t) in the form of the following Fourier-Stieltjes egral

f@) = f cos (wt) du(w) (13)

with the orthogonal incrementglu(w) and dv(w) ,satisfying the followingorthogonal
conditions [21, 22]

Eldu(w)] = E[dv(w)] =0
E[du(w)du(w;)] = E[dv(w)dv(w;)] = 8(w; — w;)28(w;, 0;)dw;dw;
E[du(w))du(w;)du(w)] = 8(w; + w; — 0y )2RB(w;, w;)dw;dw; (14)

E[dv(w)dv(w;)dv(wy)] = —6(w; + 0j — 0;)23B(w;, 0;)dw;dw;

where is thef(-) Dirac delta function.

The Spectral Representation Method, firstintroduzgdRice[23] and further developed by
Shinozuka and Deodatis [1-3,24],exploits the Craspictral representation to simulaté 2
order stationary processes by assigning the fofigwirthogonal increments:

du(wy) = V225 (@) Aw,cosey)
(15)
dv(wy) = Y2y 25 (@) bwgsin(@y)
where the random phase anglgsare independentand uniformly distributed in thagea

[0,27]. The prescribed orthogonal increments yieldthévahgexpansionfor stationary and
Gaussian stochastic processes

f) = \/72 \/ZS(a)k)Aa)k cos (wyt (16)
k=1

Weaim to develop a higher-order_spectral represientanethod by deriving new, higher-
order orthogonal increments.This starts by defiradpcretized form of partial bicoherence in
Eq. (10) as

|B(w;, ;) |*Awf Aw?

Next, consider that the orthogonal increments addromposed according to their pure and
interaction components as

du(wy) = dup(wi) + duy(wy)
(18)
dv(wy) = dvp(wy) + dv;(wy)
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with each term defined as

dup ((l)k) = \/7\/2513 ((A)k)A(l)kCOS@k)

(19)
dvy () = V2V 2Sp (@) By sin(gy)
and
i2j20
du(wy) = \/EJW{ z |by (@, w;)|cos [@; + @; + Bw;, wj)]}
i+j=k (20)

220
dv;(wy) = VZV/25, (wk)Awk{ z |by (@, w;)|sin[e; + ¢; + B(w;, wj)]}

i+j=k

andp(w;, ;) is the biphase from Eq. (9). The pure componeis,(19), correspond to the
orthogonal increments for the original spectralrespntation method, exceptbased on pure
power spectrum in Eq. (11). Meanwhile, interaciimerements, Eg. (20), are newly generated
from the bispectrum of the process.Integratingeh@gher-order increments into the Cramér
spectral representation yields the following exjp@ams

f@) = \/72 \/ZS(a)k)Awk cos(wyt — @)
k=1
w i2j20

+\/72 Z \/ZS(a)k)Awk |bp(a)i, a)j)|cos[(a)i + a)j)t — (i +@j + B(w;, wj))]

k=1i+j=m

(21)

that produces asymmetric third-order stochasticgsses. The spectral representation in Eq.
(21), named as bispectral representation methoRKBS possesses both the prescribed
power spectrum and bispectrum. Furthermore, thpgsed orthogonal increments satisfy the
orthogonal properties of Cramér spectral represientap to & order as shown in [25].

4 WIND PRESSURE SIMULATION

A series of wind tunnel tests have been conducgetiotyo Polytechnic University as one
part of the Wind Effects on Buildings and Urban Eowment, the 2% Century Center of
Excellence Program (2003-2007) with data availaisdéne [26]. One component of this
testing program considers wind pressures on hgf-buildings. In the database, twenty
two1/400 scale models of high-rise building werasidered, and the time series data of point
wind pressure coefficients were estimated for 334 tases with different geometric building
parameters,exposure factors, and wind directiofeang

We consider one such structure with parameters showrable 1. In this test, data are
collected at 443 measurement locations on eachesfof the model in the windward, right-
sideward, leeward, and left-sideward directionse $tatistical distributions of wind pressure
are shown in Figure 2 for this structure illustngtithat the wind pressures are clearly non-
Gaussian at many locations. In these analysesnglestime histories of duratiofi =
32.767 sec. with At = 0.001 sec. is divided into 8 individual samples of duratiGh=
4 sec. and the power spectra and bispectra estimated.
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Breadth : Depth : Height 0.1m : 0.1m

0.5m
Exposure factor 1/4
Wind direction angle 0°

Table 1 : Wind-tunnel test parameters for the aersid structure.
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Figure 1:High-rise building model and incoming flawwind tunnel test a) definitions of
geometric parameters of building. b) vertical deo&f incoming flow[26].
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Figure 2: Contours of wind pressure coefficientistas a) mean b) variance c) skewness.

The time history of the measurement point at theezebottom of the windward surface has
the highest skewness (0.7133).For this reasonjrtiehistory at this point is examinedhere.
Using the estimated pure power spectrum and digecepartial bicoherence in Eq. (11) and
(17), the proposed expansion is used to genera@@lGample time histories of the wind
pressure coefficient at this location. The targetet histories and several time histories
generated using Eq. (21) with duratibr= 4sec. are shown in Figure 3.
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Figure 3: Time histories of wind pressure coefiitia) wind data b) BSRM.

From Figure 3, the time histories generated ushey pgroposed method are qualitatively
similar to those from the test with apositive skessmThe empirical PDF, power spectrum,
and bispectrum of the generated time historiescarepared with those estimated from the
wind tunnel data (“target”) in Figure 4 and theresponding statistics are compared in Table
2.These results point to the method’s ability toumately match -order properties of the
process. Not only is the power spectrum of target BSRM histories identical (as in §°2
order expansion), the real and imaginary bispecwilBSRM samples also match the target
ones from the wind pressure data.

Target BSRM
Variance 0.0324 0.0325
Skewness 0.6833 0.6301
Kurtosis 3.3264 3.0125
Table 2 : Statistics of target and BSRM-generatetvpressure coefficient time
histories.
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Figure 4: Comparisons between target and BSRM hiisteries a) empirical PDF b) power
spectrum c) real bispectrum at 1 Hz. d) imaginaspéctrum at 1Hz.

12 CONCLUSION

In this paper, an advanced stochastic simulatiothode for generating asymmetric non-
Gaussian processes has beenderived from the Cep®étral representation. This represents
a third-order extension of the original spectrgresentation method. By defining new third-
order orthogonal increments, the methodology inetucdontributions from the bispectrum.To
achieve this, two new quantities — the pure povgecsum and partial bicoherence — are
defined to separate the independent and interactingponents in power spectrum. Using this
method, wind pressure time histories are generatdze consistent with observations from
wind tunnel tests.
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