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Abstract. In this paper the response analysis of the rail resting on the ballast modelled as a 
fractional viscoelastic material is presented. The train speed is modelled as a normal random 
variable with assigned mean and covariance. The probabilistic characterization of the 
response is performed by the state variable analysis method. 

1 INTRODUCTION 

Nowadays, one of the most important issues in the railway field is to improve the strength, 
augment the track durability and increase the efficiency, especially for the heavier axle loads 
and high speed. In order to achieve such purpose it is necessary to have a better understanding 
of the static and the dynamic behaviour of the rail track structure by means of a proper 
mathematical model.  

Since the beginning of the nineteenth century, the problem of moving loads is review in 
detail by Timoshenko in [1], due to the construction of the first railway bridges. In literature 
there exists several models for the rail track based on the theories of moving loads, by using 
different methods (analytical, semi-analytical, finite elements,...). These models are based on 
the theories of structures under moving loads presented by Fryba [2]. 

In order to improve the performance of the rail track, new materials and new 
configurations are now currently used, and exhibit pronounced viscoelastic behaviour. 
Classically viscoelastic materials have been model with different combinations of springs and 
dashpots. However, since Nutting experimental tests [3], it has been demonstrated the 
inconsistency of the classical models to characterize viscoelastic behaviour. Some years later, 
Scott Blair and Caffyn [4] proposed the use of fractional calculus (see [5]) to interpret 
mathematically Nutting experiments.  

The aim of this paper is to model the rail track response under random train speed 
considering the rail track modelled as a simple supported elastic beam resting on a liner 
viscoelastic foundation (modelled with fractional constitutive laws) that simulates the ballast 
layer and the train is simulated as a moving force. The stochastic analysis is performed by 
using the state variable analysis method [6]. 

2 MODEL OF VISCOELASTIC BALLASTED RAIL TRACK 

The rail track model consists in the rail and the ballast. The ballast layer may be made of 
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asphalt, this material obeys the Nutting law [3] and then the constitutive (hereditary) law is 
well suited by a fractional operator. As in fact as the relaxation function R(t) of the ballast is 
given in the form 

 

R(t) =
Eβ

Γ(1− β )
t −β  (1) 

where 
 
Eβ  and β  are parameters depending o the material and Γ(⋅)  is the gamma function. 

The Boltzman superposition principle gives the time history in terms of stress σ (t) for an 
assigned strain history ε (t) in the form 

 (2) 

Then by inserting Eq. (1) in Eq. (2) it is obtained 

 (3) 

where the symbol CD
0+
β ε( )(t) stands for the Caputo fractional derivative. By performing 

experimental relaxation test on the material, the parameters 
 
Eβ  and β  may be easily obtained 

by a best fitting procedure by assuming that Eq. (1) is valid. Then, by modelling the ballast as 
a viscoelastic Winkler model resting on the bedrock the force displacement relationship is 
written in the form 

 (4) 

where Eβ  is the new anomalous coefficient which account for the depth of the ballast layer 

and on the interdistance of the rails and on the interdistance of the sleepers, u(τ ) is the 
vertical displacement of the top of the ballast and f (t) is the load transmitted by the rail to the 
ballast. The governing equation of the rail is then given as 

 (5) 

whereρ , m, A, E, I, L are respectively the density, the mass, the area, the Young modulus, 
the inertial moment and the length of the rail. F(x, t) in Eq. (5) is the force that the train  
applies in the rail. In the following it is supposed that the rail is so long that the train may be 
consider as a single load. In this case, F(x, t) is given as 

F(x,  t) = M  g δ (x − xv(t)) = M  g δ (x − vt), (6) 

where M is the total mass of the train, g is the gravity acceleration, v is the speed of the 
train and δ (⋅)  is the Dirac’s delta. For simplicity sake’s it is also supposed that the rails are 
simply supported. Since the system is linear the case in which it is necessary to take into 
account for single loads transmitted by the wheels then by using the superposition principle 
the analysis may be easily extended. In the Figure 1, a layout of the present model is 
represented. 
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Figure 1: Ballasted rail track schema. 

The vertical displacement u(x,  t)  is calculated trough the Galerkin method, namely 
u(x,  t) is decomposed in the orthogonal basis ψ j (x) in the form  

u(x,t) =
j=1

∞

∑ψ j (x)yj (t) 
(7) 

where ψ j (x) = sin(jπx / L). By inserting Eq. (7) into Eq. (5), multiplying by ψ k(x) and 

integrating in the domain (0, L), due to the orthogonality condition of the basis ψ j (x), the 

following set of fractional differential equations are obtained in the form 

;  j = 1, 2, ... ∞. 
(8) 

In the next section, the analysis method of such set of equations will be described. 

3 METHODOLOGY: STATE VARIABLE ANALYSIS 

Many solution method are available for solving the fractional differential equations, see 
[5,7], in this paper it is proposed the use of the state variable analysis method [6] that will be 
briefly summarised. Equation (8) may be rewritten in sequential form as follows  

k=1

n

∑Ckj (
CD

0+
kβ yj ) + K j yj (t) = f j (t), 

(9) 

where nβ is equal to the maximum order of derivation that appears in the given differential 
equation (in the case under study is two). And� Cnj = 1, C1 j = (Eβ / ρA), 

Ckj = 0∀k = 2,3,...,(n−1), K j = EI π j / ρAL( )4
 and f j (t) = (2Mg / LρA)sin( jπvt / L) .  

It is now introduced the state variable�vector zj  in the form 

zj
T (t) = yj (t) (CD

0+
β yj )(t) (CD

0+
2β yj )(t) … (CD

0+
(n−1)β yj )(t)




 

(10) 

and appending the (n – 1) identities  

∑
s=1

n−k

Cs+k
CD

0+
β CD

0+
(s−1)β yj( )(t) = ∑

s=1

n−k

Cs+k
CD

0+
sβ yj( )(t); k = 1, 2, ..., (n − 1). 

(11) 

Eqs. (7) and (11) represent a set of n coupled differential equations readily cast in the form  
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A j
CD

0+
β zj( )(t) + B jzj (t) = gj (t), (12) 

where 

gj
T (t) = [ f j (t) 0 0 ... 0 ]  (13) 

and A j  and B j  are symmetric matrices defined as  

;  

 

(14) 

zj (t) can be decomposed in the orthogonal basis of the eigenvectors of A j  and B j  as 

follows 
Φ j

TAΦ jj = U j ; Φ j
TBΦ jj = V j  (15) 

where U j  and V j  are diagonal matrices and Φ j  is the (nxn) matrix whose columns are the 

eigenvectors of the matrix A j
−1B j . 

 

(16) 

 
By means of modal transformation 

zj (t) = Φ j pj (t) (17) 

a new set of uncoupled fractional differential equation is derived in the form  
U j (

CD
0+
β pj )(t) + V j pj (t ) = Φ j

T gj (t) , (18) 

by indicating with u jk  and vjk  the k-th diagonal element of the matrix U j  and V j  

respectively, it follows 

 (19) 

where ξ jk =
vjk

u jk

,  being φ j  1k  the component (1,k) of the matrix Φ j . Now, it is 

necessary to calculate the first component of the vector zj (t)  and hence it is now written 

yj (t) = zj1(t) = φ j  1k pjk(t)
k=1

n

∑  
(20) 

In order to solve Eq. (19), it is discretized the time axis into small intervals of equal length 
∆t , and it is grouped pjk(∆t), pjk(2∆t) , … , pjk(n∆t) into a vector labelled as 

 
pjk

T = pjk(∆t ) pjk(2∆t ) � pjk(n∆t)




 (21) 
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and applying the Grünwald-Letnikov integration method it is obtained that the solution of 
Eq. (19) is given in the form 

 (22) 

where I is the identity matrix and the matrix D is the Grünwald-Letnikov operator of the 
fractional differential equation, that in matrix form is written as 

 

(23) 

where λi = λi−1( j −1− β ) / j , λ1 =1 and qj (v) is written as 

 

qj
T (v) = 2Mg

LρA
sin j∆ t

πv
L







sin 2 j∆ t
πv
L







� sin mj∆ t
πv
L


















. 

(24) 

 

4 STOCHASTIC ANALYSIS: RANDOM TRAIN SPEED 

As it has been found in literature [8], it is assumed that the train speed is modelled as a 
normal random variable whose PDF is characterized by the mean value µv and the covariance 
σv, namely 

pv(v) = 1

2πσ v

e
− (v−µv )2

2σ v
2

 
(26) 

Sine the system is linear and the input is Gaussian, the response is also Gaussian and then 
its probabilistic characterization is fully described by the mean and the covariance. 

The mean of pjk  is denoted as E[pjk ]  and is calculated as follows 

 (27) 

where . 

In order to calculate E[pjk ]  it is necessary to calculate the mean of the vector qj (v), 

defined as 

  (28) 

Then by inserting Eq. (26) in Eq. (28) the r-th component of the vector qj (v) labelled as 

qjr results 

E[qjr (v)] = 1

2πσ v

2Mg
LρA

sin j∆ t
πv
L

r





e
−(v−µv )2

2σ v
2

dv
−∞

∞

∫  
(29) 
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and is given in closed form  

µqjr
= E[qjr (v)] = 2Mg

LρA
sin j∆t

πµv

L
r





e
− j 2∆t2π 2σ v

2

2L2 r2

 
(30) 

The variance matrix xj  is given as  

 (31) 

where the covariance matrix is defined as 

 

(32) 

In order to calculate the variance and the covariance of pjk , it is necessary to calculate first 

the variance and covariance of qj (v). 

The covariance of qj (v) is expressed as 

σ qjr q js
= E[qjr (v)qjs(v)] − E[qjr (v)]E[qjs(v)] = qjr (v)qjs(v)

−∞

∞

∫ pv(v)dv− µq jr
µqjs

 (34) 

where E[qjr (v)qjs(v)] results 

E[qjr (v)qjs(v)] = 1

2πσ v

2Mg
LρA








2

sin j∆t
πv
L

r





sin j∆t
πv
L

s





e
−(v−µv )2

2σ v
2

dv
−∞

∞

∫  
(35) 

and in closed form 

E[qjr (v)qjs(v)] = 1

2πσ v

2Mg
LρA








2
1

2
cos

jπ (r − s)∆tµv

L






e
− j 2∆t2π 2σ v

2 (r −s)2

2L2

− 1

2πσ v

2Mg
LρA








2
1

2
cos

jπ (r + s)∆tµv

L






e
− j 2∆t2π 2σ v

2 (r +s)2

2L2

 

(36) 

 
In virtue of Eq. (7) the discretization vector u(x,t) may be written as 

 
u(x)T = u(x,∆t) u(x,2∆t) � u(x,n∆t )



  (37) 

 
Then, considering only the first mode, for shake of simplicity, u(x)  is calculated as 

u(x) =ψ 1(x)y1    (37) 

where 
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E[ y1(t)] = E[z11(t)] = φ1 1kE[p1k ]
k=1

n

∑ = φ1 1kQ1kE[q1(v)]
k=1

n

∑  
(38) 

The mean of u(x,t) denoted as E[u]  results 

E[u(x)] = sin
π x
L







φ1 1kQ1kE[q1(v)]
k=1

n

∑  
(39) 

where u(x)  is a matrix that contains the n time steps and the m discrete steps of x. 
And the root mean square matrix of u(x, t) is calculated as 

 
(40) 

5 RESULTS AND CONCLUSIONS 

The mean and the variance of the vertical displacement have been calculated using Monte 
Carlo simulation and by means of the presented methodology.   

 

 
 

Figure 2 - Mean and variance of the vertical displacement at L/2 for 1000 samples.  
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In the Figure 2 are represented the mean and variance of the vertical displacement u(x,t), 
in blue the presented methodology and in red Monte Carlo simulations for 1000 samples. This 
example is calculated at x = L/2 for the values: E = 2 1011Pa, I = 10-5 m4, M = 1000 kg, A = 
0.01 m2, L = 1000m, ρ = 4000 kg/m3, Eβ = 106Pasβ ,β =0.1, µv = 15.3 m/s and σv=1.3 m/s.  

It has been analysed the influence of stochastic train speed variation in the vertical 
displacement of fractional viscoelastic rail track ballast.  

The mean and the variance of the vertical displacement have been calculated by the 
presented methodology and compared by means of Monte Carlo simulations.  

In order to make the present model and procedure more interesting, and with wider 
application, the following steps are proposed:  

• study the velocity as an stochastic process  
• addition of other layers in the rail track  
• addition of the sleepers as beam discontinuities  
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