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Abstract. In this paper the response analysis of the rastiregy on the ballast modelled as a
fractional viscoelastic material is presented. Ttan speed is modelled as a normal random
variable with assigned mean and covariance. Thebabdistic characterization of the
response is performed by the state variable amalysthod.

1 INTRODUCTION

Nowadays, one of the most important issues indiieay field is to improve the strength,
augment the track durability and increase the iefiicy, especially for the heavier axle loads
and high speed. In order to achieve such purpasenécessary to have a better understanding
of the static and the dynamic behaviour of the t@tk structure by means of a proper
mathematical model.

Since the beginning of the nineteenth century,ptmlem of moving loads is review in
detail by Timoshenko in [1], due to the constructad the first railway bridges. In literature
there exists several models for the rail track dasethe theories of moving loads, by using
different methods (analytical, semi-analytical itenelements,...). These models are based on
the theories of structures under moving loads piteskeby Fryba [2].

In order to improve the performance of the railckra new materials and new
configurations are now currently used, and exhgmbnounced viscoelastic behaviour.
Classically viscoelastic materials have been muaahl different combinations of springs and
dashpots. However, since Nutting experimental t¢3}s it has been demonstrated the
inconsistency of the classical models to charagteriscoelastic behaviour. Some years later,
Scott Blair and Caffyn [4] proposed the use of ti@wal calculus (see [5]) to interpret
mathematically Nutting experiments.

The aim of this paper is to model the rail trackp@nse under random train speed
considering the rail track modelled as a simplepsui@d elastic beam resting on a liner
viscoelastic foundation (modelled with fractionanetitutive laws) that simulates the ballast
layer and the train is simulated as a moving fofidee stochastic analysis is performed by
using the state variable analysis method [6].

2 MODEL OF VISCOELASTIC BALLASTED RAIL TRACK
The rail track model consists in the rail and thddst. The ballast layer may be made of

Meccanica dei Materiali e delle Strutture | VI (2016), 1, PP. 33-40 33



N. Colinas-Armijo and M. Di Paola.

asphalt, this material obeys the Nutting law [3§l dhen the constitutive (hereditary) law is
well suited by a fractional operator. As in factths relaxation functio®(t) of the ballast is
given in the form
R(t) = & tF (1)
ra-p)

where £, and S are parameters depending o the materiallafiflis the gamma function.
The Boltzman superposition principle gives the timstory in terms of stresg(t) for an
assigned strain historg(t) in the form

o(t)= [ R(t-T)(T)dr )
Then by inserting Eg. (1) in Eq. (2) it is obtained
__ & [ vBavir— e (€ (3)
o= ﬁ)jo(z ) Pé()dt =5 (“Dle)(r)

where the symbo(CDéis) (t) stands for the Caputo fractional derivative. Byfqening
experimental relaxation test on the material, thi@ametersE; and [ may be easily obtained

by a best fitting procedure by assuming that Ejig{alid. Then, by modelling the ballast as
a viscoelastic Winkler model resting on the bedrtdok force displacement relationship is
written in the form

B oy Purvde = E.(€DP (4)
fO=5t5 [ @=vyPic)de = By (“DLu)@)

where E; is the new anomalous coefficient which accounttierdepth of the ballast layer

and on the interdistance of the rails and on therdistance of the sleepers(r) is the
vertical displacement of the top of the ballast drft) is the load transmitted by the rail to the
ballast. The governing equation of the rail is tigeren as

pAi(x,1)+ Elu”"(x.0)+ Eg(“DEu)(x,t)= F(x.1) (5)

wherep, m, A, E, |, L are respectively the density, thass) the area, the Young modulus,
the inertial moment and the length of the raix, t) in Eqg. (5) is the force that the train

applies in the rail. In the following it is suppadsthat the rail is so long that the train may be
consider as a single load. In this caBéx, t) is given as

F(x, t) =M g o(x—xv(t)) =M g d(x—wt), (6)

whereM is the total mass of the traig,is the gravity acceleratiow,is the speed of the
train and d([) is the Dirac’s delta. For simplicity sake’s itatso supposed that the rails are
simply supported. Since the system is linear thee da which it is necessary to take into
account for single loads transmitted by the whéets by using the superposition principle
the analysis may be easily extended. In the Fidyrea layout of the present model is
represented.
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Figure 1: Ballasted rail track schema.

The vertical displacementi(X, t) is calculated trough the Galerkin method, namely
u(x, t) is decomposed in the orthogonal bagigx) in the form

u(et) = 3, (9% )

where ¢, (x) =sin(jzx/L). By inserting Eq. (7) into Eq. (5), multiplying by, (x) and
integrating in the domain (0, L), due to the ortboglity condition of the basig, (x), the
following set of fractional differential equatioase obtained in the form

(7)

(8)

4
. TTj Eg o 5 _2Mg . .mvt . _
yj(t)+EI(m) yj(t)+p—A( D0+yj)(t)—LpAsm(]T), ]=1,2,...00.

In the next section, the analysis method of sutlefsequations will be described.

3 METHODOLOGY: STATE VARIABLE ANALYSIS

Many solution method are available for solving frectional differential equations, see
[5,7], in this paper it is proposed the use ofdtate variable analysis method [6] that will be
briefly summarised. Equation (8) may be rewritteseéquential form as follows

9)

Zij (CDgigyj)"' ijj (t)= fj (1),
k=1
whereng is equal to the maximum order of derivation thaears in the given differential
equation (in the case under study is two). AndC; =1, C,=(E;/pA),

C, =00k=2,3,...,0-1), K, =El (777 / pAL)" and f (t) = (2Mg/ LoA)sin(jmt /L).
It is now introduced the state variableector z; in the form
2= ¥O DO COXYO - (DI |
and appending the  1)identities
n-k n-k
§1C5+k(CDé{ °DEVAy, (1) = gle+k(°D§:’3yj)(t); k=12, ... (n-1)
Egs. (7) and (11) represent a set of n coupleémifitial equations readily cast in the form

(10)

(11)
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A,(°DZz )+ Bz, = g,0), (12)
where
g (M)=[ f) 0 0 .. 0] (13)
andA,; andB, are symmetric matrices defined as
¢, C, - C,, C, K, 0 0 0 (14)
CZ./’ C3j Cn.i 0 0 _C2j _C(n—l)j _an
A= : Do : o By=| : ' : :
C(n—l)j an e 0 0 0 _C("-l)j
c, 0 -« 0 0 0 -C,

z;(t) can be decomposed in the orthogonal basis of ijeneectors ofA; and B, as

follows
CD]TACDJ. =U;; CD]TBCDJ. =V, (15)
whereU; andV, are diagonal matrices ardl; is the(nxn) matrix whose columns atke

eigenvectors of the matrif& j’lBj .

0 -, - 0 0o | (16)
oo 0
A"B,=—| : . : :
C.
Wl 00 - 0 -C,
L J Clj C(”—2)j C("—l)j |

By means of modal transformation

z;(t)=®;p;(t) (17)
a new set of uncoupled fractional differential eégurais derived in the form
U;(°D5p () +V,p; () = @, g; (t), (18)

by indicating with u, and v, the k-th diagonal element of the matrl4; and V,
respectively, it follows

(CD(?erjk)(t)-l-gjkpjk(t): éj lkgjk(t): 43]' 1k f](t) (19)
where &, = i ;i P being ¢, ,, the componentl k) of the matrix®,. Now, it is
ik ik

necessary to calculate the first component of gwtor z (t) and hence it is now written

n 20
Y (t) = Zjl(t) :Zﬂ 1K pjk(t) 29

In order to solve Eq. (19), it is discretizec_j thred axis into small intervals of equal length
At, and it is groupedp,, (At), p,(24t), ..., p,(nAt)into a vector labelled as

pjkT:|: P, (At) p,(24t) = pjk(nAt)} (21)
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and applying the Grinwald-Letnikov integration neatht is obtained that the solution of
Eq. (19) is given in the form
(D+§jkl)pjk = Q)J- 1kQJ(V) (22)
wherel is the identity matrix and the matrix is the Grinwald-Letnikov operator of the
fractional differential equation,_ that in matrixrfo is Writte_n as

1 0O - 0 0 (23)
A1 o 0 0
D= : o Do
At A 1 0
Z’m A’m—l A’2 1
where A =A_,(j-1-B8)/j, A, =1andq,(v) is written as
(24)
qJT(v):%[ sin(jAtﬂ] sin(sztﬂj o s‘n(mjmﬂ] }
LpA L L L

4 STOCHASTIC ANALYSIS: RANDOM TRAIN SPEED

As it has been found in literature [8], it is as®airthat the train speed is modelled as a
normal random variable whose PDF is characterizetthé mean valug, and the covariance
oy, Namely

(v-14,)° (26)

e 20\,2

p,(V) = \/ZTO’

Sine the system is linear and the input is Gaus#ii@response is also Gaussian and then
its probabilistic characterization is fully des&ibby the mean and the covariance.
The mean ofp,, is denoted ag[p, ] and is calculated as follows

Elp,]=9, . (D+&,1) Elq,]=Q,Elq ()] 27)

~ -1
whereQ, = ¢, 1,{(D+§J.,<I) :
In order to calculateE[p, ] it is necessary to calculate the mean of the vec(o),
defined as

B, = Elq;0)1= [~ a;0)p,(ndv (28)

Then by inserting Eq. (26) in Eqg. (28) the r-th gament of the vectog;(v) labelled as
g results

29)
1 2Mgpe (L ) e (
E[q’*(v)]_\/ﬁav |_pAI—ooS'n(JAt L rje av
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and is given in closed form

2Mg ( b ) Iy . (30)
= E[q; =——gn| jAt—"r|e 2t
Ho, = E[0; (V)] LoaSNUA

The variance matrix; is given as
E[pjkpjkT] = ijE[qj (v)qj (V)T ]ijT = ijijijT (31)

where the covariance matrEq_ is defined as
J

| Elg, 001 Elg,00g,0] - Elg,()g, 0] | (32)
3 _ E[qj'z(v)z] E[qj‘z(v)qj‘m(v)]
Elg,,(v)]

In order to calculate the variance and the covagafp,, it is necessary to calculate first
the variance and covariance @f(v).
The covariance ofj;(v) is expressed as

7, o =El6, ()01 - ELq, MIELQ, 0] = [ g, Wa.mp,0dv-p 1, Y

where E[q;, (v)q;,(V)] results

(v—u) (35)
E[qu(V)qjs(V)]:\/%m [i’!ﬁ] I sm[JAtTrjsm[jAt%sj dv

and in closed form

_ 2At21720 - i2aProd(r-s)? (36)
£1q, ()0, = S| 210 Lo 71090 7

2o, \ LpA
1 (2Mg]21 S(J’ﬂ(r+s)Atuvj R
- ——| co§ ——— e
N2mo \ LpA L

In virtue of Eq. (7) the discretization vecto(x,t) may be written as
u(x)" :[ u(x,At) u(x,2At) <& u(x,nAt) } (37)

Then, considering only the first mode, for shaksiofplicity, u(x) is calculated as

u(x) = &, (x)y, (37)

where
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n n (38)
ELy,(t)] = E[2,(t)] = 2 @ 4ElPy] = 2 & 4 QuEla, (V)]
k=1 k=1
The mean olu(x,t) denoted a€[u] results
(71X & (39)
o) =sin |31, El0, )
k=1
where u(X) is a matrix that contains the n time steps andrtliscrete steps of x.
And the root mean square matrix of u(x, t) is cltad as
(40)

E[u(x)u(x)’ ] =sin® (%)2 0,1, QuZ, Q.

5 RESULTSAND CONCLUSIONS

The mean and the variance of the vertical displargrhave been calculated using Monte
Carlo simulation and by means of the presented odelbgy.
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Figure 2 - Mean and variance of the vertical displaent at./2 for 1000 samples.
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In the Figure 2 are represented the mean and wariainthe vertical displacemen{x,t),
in blue the presented methodology and in red MQatdo simulations for 1000 samples. This
example is calculated at x = L/2 for the values: E 10"'Pa, | = 1 m* M = 1000 kg, A =
0.01 nf, L = 1000m,P= 4000 kg/m, E, =10°Pas’, 3=0.1,p, = 15.3 m/s and,=1.3 m/s.

It has been analysed the influence of stochaséim tspeed variation in the vertical
displacement of fractional viscoelastic rail trdzlast.
The mean and the variance of the vertical displargnihave been calculated by the
presented methodology and compared by means ofdMoatio simulations.
In order to make the present model and proceduree nideresting, and with wider
application, the following steps are proposed:
» study the velocity as an stochastic process
» addition of other layers in the rail track
» addition of the sleepers as beam discontinuities
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