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Abstract. The stochastic response of acoupled bending-torsion beam, carrying an arbitrary 
number of supports/masses, is investigated. Usingthe theory of generalized functions in 
conjunction with the elementary coupled bending-torsion beam theory, exact analytical 
solutions under stationary inputs are obtained based on frequency response functions derived 
by two different closed-form expressions. The analytical solutions are obtained for all 
response variables, considering any number of supports/masses along the beam and arbitrary 
spatial load distributions. A pertinentnumericalexampleisreported. 

Sommario. Viene indagata la risposta stocastica di una trave con un numero arbitrario di 
supporti elastici e masse appese,che presenta un comportamento flessionale e torsionale 
accoppiato. Utilizzando la teoria delle funzioni generalizzate e la teoria elementare di 
accoppiamento flessionale-torsionale, soluzioni analitiche esatte sono ottenute, per 
eccitazioni stazionarie, attraverso funzioni di risposta in frequenza derivate attraverso due 
diverse espressioni in forma chiusa. Le soluzioni analitiche sono ottenute per tutte le variabili 
della risposta, considerando un numero arbitrario di supporti e masse lungo la trave e una 
qualsiasi distribuzione spaziale del carico. Si riportainfine unesempionumerico. 

1 INTRODUCTION 

The response of beams to random loads has been widely investigated in literature, and 
some examples can be found in ref. [1-2]. Most works concernedbending vibration analysis 
based on Euler-Bernoulli or Timoshenko beam theory, under the fundamental assumption 
thatthe beam cross-section is doubly-symmetric, so that the shear center (SC) coincides with 
the gravity center (GC).  

However, beams with mono-symmetric cross sections are frequently employed in different 
engineering applications such as wings, turbine blades and propellers. Because, in this case, 
the SC does coincide with the GC, the dynamics of these beams exhibits coupled bending-
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torsion phenomena. Indeed, bending-induced inertial forces, which arise along the mass axis 
(i.e. the locus of the gravity centers of the beam cross sections), are eccentric with respect to 
the elastic axis (i.e. the locus of the shear centers of the beam cross sections) and, as a result, 
bending is inherently coupled with twisting. The coupling effects have generally been 
described by the so-called elementary coupled bending-torsion beam theory [3-4], i.e. 
neglecting warping effects and not considering rotatory inertia and shear deformation of the 
beam. These effects were also considered in other studies [5-6]. 

As for forced vibration analysis, using the normal mode method Eslimy et al. [7-8] 
obtained the response of a coupled bending-torsion beam when subjected to deterministic as 
well asstationary, Gaussian loads. Specifically, they applied the method to a cantilever aircraft 
wing for which there is a substantial coupling between bending and torsional vibrations. 

It must be noticed, however, that all works in ref.[1] through ref.[8] generally addressed 
uniform beams, with no attachments or in-span supports. The latter are of great interest for 
engineering applications but have rarely been considered in studies on coupled bending-
torsion phenomena. 

This paper proposes an exact method for beams with mono-symmetric cross section, 
carrying an arbitrary number of elastic supports and attached masses, subjected to stationary 
loads. The elementary bending-torsion theory is considered as in ref.[3-4], in conjunction with 
the theory of generalized functions to handle the discontinuities of the response variables at 
the application points of supports and masses. Exact analytical solutions for the response are 
built based on frequency response functions of the beam obtained, in this paper, by two 
different closed-form expressions. The key step to build the frequency response functions is a 
novel closed-form analytical expression derived, in this paper, forthe response of the beam 
without response supports/masses, subjected to arbitrarily-placed harmonic unit force and unit 
twisting moment. A numerical example will show the response power spectral density 
functionof a beam with angular section, carrying translational and torsional-rotational elastic 
supports, under a transverse stationary load. 

2 PROBLEM STATEMENT 

Figure 1 shows the case under study, i.e. a uniform straight beam of lengthL, referred to a 
right handed coordinate system, carrying an arbitrary number of elastic supports and attached 
masses and subjected to a transverse distributed load. Beam cross section is assumed to be 
mono-symmetric, being x its symmetric axis. The loci of the shear centers and mass centers of 
the beam cross section are respectively the elastic axis and the mass axis; the first coincides 
with the y-axis, while the latter is at distance xa from y-axis. The bending deflection in the z-
direction, the bending rotation about the x-axis and the torsional rotation about the y-axis of 
the shear centers are denoted respectively by ( , ), ( , )h y t y tθ and ( , )y tψ . 

The transverse distributed load, acting parallel toO z− , is applied at distance cx  from y -

axis; it can be separated into a transverse load applied along the elastic axis, and a distributed 
torque aboutOy , as shown in Figure 1. The elastic support and attached masses are applied 
at jy , with 10 ... jy y L< < < <  and stiffness parameters of the j-th support and properties of 

the j-th mass are denoted as follows: 
• 

jHk for translational support, 
j

kΨ for torsional-rotational support and
j

kθ for bending 

rotational support. 
• jM is the mass, 

jxxI and 
jyyI the components of the mass inertia tensor about axes x 
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and y in Figure 1. 
 

 
Figure 1: Beam with a mono-symmetric cross-section carrying an arbitrary number of elastic supports and 

attached masses and subjected to a transverse distributed load and distributed torque 

2.1 Equations of motion 

Pursuing the primary purpose of obtaining the frequency response functions in order to 
determine the stochastic response, assume that the beam, carrying supports/masses as shown 
in Figure 1, is loaded by a harmonic distributed load ( ) i tf y e ω , and a harmonic distributed 
torque ( ) ( )i t i t

cg y e f y x eω ω= , on the interval ( , )a b , with 0 a b L≤ ≤ ≤ , whereω is the 

frequency. Let be ( , , ) ( , ) , ( , , ) ( , )i t i th y t H y e y t y eω ωω ω ψ ω ω= = Ψ , the steady state response 
variables. By using the elementary coupled bending-torsion theory and making use of the 
generalized functions, the following steady state coupled equations of motion are derived: 

 
4

2 2 (1)

1 14
1 1

( ) ( ) ( ) ( ) ( ) 0
N N

a a j j j j

j j

H
EI m c i H mx c x i P y y Mf y y f y

dy

d
ω ω ω ω δ δ

= =

− − + − Ψ − − + − + =∑ ∑  (1) 

 
2

2 2 (1)

1 22
1 1

( ) ( ) ( ) ( ) ( ) 0
N N

a a j j j j j

j j

d
GJ m x c i x H I c i P x y y Mt y y g y

dy
αω ω ω ω δ δ

= =

Ψ
− − + − Ψ − − + − + =∑ ∑  (2) 

where EI and GJ are respectively bending and torsional rigidities, m is the mass per unit 
length, Iα is the polar moment of inertia per unit length about the elastic axis, while1c and 

2c are viscous damping coefficient per unit length respectively in bending and in torsion, to be 

assigned so that damping is proportional [8]; in Eqs.(1)-(2) ( ) ( )k
jy yδ − is the k-th formal 

derivative of Dirac’s delta ( )jy yδ − , while  ,j jP Mt and jMf are concentrated force, twisting 

moment and bending moment associated with supports and attached masses atjy , and they 

are given as: 

 ( ) ( ) ( )j Pj j j jP H y x yκ ω  = − − Ψ     ;   ( ) ( )j Tj jMt yκ ω= − Ψ    ;   ( ) ( )j Mj jMf yκ ω= − Θ  (3) 

being ( ), ( )j jH y yΨ  and ( )jyΘ  the deflection, torsional and bending rotation at jy y= , and 

( ), ( ), ( )Pj Tj Mjκ ω κ ω κ ω  frequency dependent terms given as: 

 2( )Pj Hj jMκ ω κ ω= −    ;   2 2( )
jTj j yy j jk I M xκ ωΨ= − −     ;   2( )

j j jM xxk Iκ ω ωΘ= −  (4) 

Eqs.(1)-(2)can be combined, by eliminating either Hor Ψ, to obtain two uncoupled 6-th order 
differential equations for deflection and torsional rotation: 
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2.2 Solutions of the equations of motion 

Consider first the following equation: 

 
6 4 2

06 4 2
( ) 0

d X d X d X
X y y

dx dx dx
α β γ η δ+ − + − − =  (9) 

The solution Xtakes the form: 

 
6

(*)
0 0

1

( , ) ( , )j j
j

X y y c J y y
=

= Ω +∑  (10) 

where 

 
1 1 2 1 3 2

4 2 5 3 6 1

cosh( );  sinh( );  cos( );

sin( );  cos( );  sin( );  

r X r X r X

r X r X r X

Ω = Ω = Ω =

Ω = Ω = Ω =
 (11) 

while the particular integral is obtained by Mathematica, after few manipulations in the 
following form: 

 

(*)
0 1 0 2 3 3 2 2 0 1 3 1 3

3 0 1 2 1 2 0

( , ) sinh( ( )) ( ) sin( ( )) ( )

sin( ( )) ( ) ( )

J y y D r y y r r r r r y y r r r r

r y y r r r r U y y

= − − − − + +

+ − + ⋅ −

 (12) 

being ( )U ⋅  the Unit-Step function, 3 3 3 2 2 2 2/ (4 4 27 18 )d α ηβ γ α α η γ β αβγη= + + − −  and 

1 2 1 3 3 2 1 2 3( )( )( )D d r r r r r r r r r= − + + − .  

Starting from Eq.(9) closed-form solutions can readily be derived for Eqs.(5)-(6), as indeed 
the particular integrals associated with formal derivatives of the Dirac’s delta, which are 
related to unit force and moments in Eqs.(5)-(6), can readily be obtained from Eq.(9) by 
successive derivation. 
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3 FREQUENCY RESPONSE FUNCTION OF BEAMS WITH SUPPORTS/MASSES 
VIA GENERALIZED FUNCTIONS 

In this Section an exact method to build the frequency response function of the beam with 
supports/masses in Figure 1 will be shown. 

Firstly considerthe beam in Figure 1 subjected only to the transverse distributed load( )f y  
in the interval ( , )a b  with 0 a b L≤ ≤ ≤ . By applying the linear superposition principle, the 

vector ( ) ( ) ( ) ( ) ( ) ( ) ( )( )f f f f f f fy H M S T = Θ Ψ Y  collecting all response variables of 

the beam with supports/masses can be written as: 

 ( ) ( ) ( )
( )

1

( ) ( ) ( , ) ( )
n

f f f
j j f

j

y y y y y
=

= + +∑Y Ω c J Λ Y  (13) 

In Eq.(13), vector ( ) Tf
j j j jP Mt Mf =  Λ  collects the unknown reaction force ( )jP ω , 

twisting moment ( )jMt ω  and bending moment ( )jMf ω  at location jy ; ( , )jy yJ  is a 6 3×  

matrix collecting the particular integrals related to the response discontinuities at location jy , 

built as explained in Section 2.2; ( ) ( )f yY   are the particular integrals related to load( )f y , 

 ( )
( ) ( ) ( , ) ( )

b P
f a

y y f dξ ξ ξ= ∫Y J  (14) 

where ( ) ( , )P y ξJ  is the vector of the particular integrals related to a unit transverse load. 
Through a recursive procedure, the unknowns jΛ  in Eq.(13)can be obtained as functions 

the vector of integration constants ( )fc  only, to finally derive the following expression 
for ( ) ( )f yY  

 � �( ) ( )
( )( ) ( ) ( )f f

fy y y= +Y Y c Y  (15) 

where� ( )yY is a vector depending on the beam parameters only, and� ( ) ( )f yY depends on the 
beam parameters and the applied load (expressions are omitted for brevity). The vector of 

integration constants ( )fc  can be determined on setting the beam boundary conditions. 
Specifically, it will be obtained by inverting a 6 6× matrix in a closed form using 
Mathematica. 

An alternative exact expression of the frequency response functions can be built by modal 
superposition. For this, exact natural frequenciescan be obtained from the eigenproblem 

 ( )ω =B c 0  (16) 

where B is a 6×6 matrix built based on Eq.(13),where the load dependent term ( ) ( )f y =Y 0  

and 1 2 0c c= =  in Eqs.(1)-(2). Upon computing the natural frequenciesfrom Eq.(16), 

corresponding exact eigenfunctions are derived, in a closed analytical form, from Eq.(13)for  
( ) ( )f yY  with, again, ( ) ( )f y =Y 0  and 1 2 0c c= =  in Eqs.(1)-(2).Denoting nH  and nΨ as the 

eigenfunctions of deflection and torsional rotation, respectively,and by considering  the 
orthogonality condition,derived as similarly in ref.[8], the following expression can be 
derived for the frequency response function for bending deflection and torsional  rotation 

 ( ) ( ) ( ) ( )

1 1

( , ) ( ) ( )     ;     ( , ) ( ) ( )f f f f

n n n n
n n

H y q H y y q yω ω ω ω
∞ ∞

= =

= Ψ = Ψ∑ ∑  (17) 

where ( ) ( )f
nq ω denotes the modal frequency response function of the nth mode: 
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[ ]

( ) 0

2 2

( ) ( )
( )

( 2 )

L

nf

n

n n n n

f y H y dy
q

i
ω

µ ω ω ξ ω ω
=

− +
∫

 (18) 

Eq.(18)provides an insight into the contributions of every mode to the frequency response of 
the beam, very useful for design purposes. 

Frequency response function for the other response variables can be obtained from Eq.(17) 
by considering Saint-Venant and Euler-Bernoulli beam theories. 

Similarly the frequency response functions( ) ( )g yY  due tothe torque ( ) ( ) cg y f y x= , can be 

obtained replacing in Eq.(13)( ) ( )f yY withthe particular integral ( ) ( )g yY ,given as 

 ( )
( ) ( ) ( , ) ( )

b Mt
g a

y y g dξ ξ ξ= ∫Y J  (19) 

and replacing in Eq.(17)( ) ( )f
nq ω with ( ) ( )g

nq ω , whose expression is: 

 
[ ]

( ) 0

2 2

( ) ( )
( )

( 2 )

L

ng

n

n n n n

g y y dy
q

i
ω

µ ω ω ξ ω ω

Ψ
=

− +
∫

 (20) 

4 RESPONSE TO RANDOM LOADS 

Next, the stochastic response of the coupled bending-torsion beam with supports and 
attached masses, subjected to stationary loads,will be obtainedusingthe frequency response 
functions derived in Section 3.  

4.1 Response to concentrated loads 

Consider the beam in Figure 1 subjected to a finite number K  of stationary 
concentratedtransverse forcesPrapplied at distance cx  from the elastic axis,assumedto be 

statistically dependent. The power spectral density functions of the deflection, ( , )HHS y ω , 

andall response variables in vector [ ]( )y H M S T= Θ ΨY , can be obtained by the 

following expressions involving the cross spectral density functions of the forces ( )
r sP PS ω  

 
{

}

( )* ( ) ( )* ( )

1 1

( )* ( ) ( )* ( )

( , ) ( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ) ( , , ) ( )

i i

r s

K K
f f g g

Y Y i r i s i r i s
r s

f g g f
i r i s i r i s P P

S y Y y y Y y y Y y y Y y y

Y y y Y y y Y y y Y y y S

ω ω ω ω ω

ω ω ω ω ω
= =

= + +

+ 

∑∑
 (21) 

In Eq.(21), the asterisk denotes complex conjugate and ( ) ( )( , , ), ( , , )f g
i iY y Y yξ ω ξ ω  are given 

as Eq.(15) and its analogous for g(y),where ( ) ( )f yY in Eq.(14) and ( ) ( )g yY  in Eq.(19) 

arereplaced respectively by( ) ( , )P y ξJ and ( ) ( , )Mt y ξJ .   

4.2 Response to distributed loads 

Assume now that the beam in Figure 1 is acted upon by a stationary distributed transverse 
loadf(t), applied at distance cx  from the elastic axis. The load israndomly varying with respect 

to time, but not spatially.If ( )ffS ω denotes the power spectral density function of f(t), the 

power spectral density functions of all response variables can be obtained as follows: 

 
2 2( ) ( ) ( )* ( ) ( )* ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( )

i

f g f g g f

YY i i i i i i ff
S y Y y Y y Y y Y y Y y Y y Sω ω ω ω ω ω ω ω= + + + 

 
 (22) 
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where ( ) ( , )f
iY y ω , ( ) ( , )g

iY y ω are given respectively as Eq.(15)and its analogous for ( )g y . 

 

5 NUMERICAL EXAMPLE 

 
Figure 2: Clamped-clamped beam with angular section carrying elastic supports 

 
Consider the clamped beam with angular cross section shown in Figure 2. Properties are 

chosen as follows: 
5 4 8 1

9 2 9 2 2 2
1 2

1.0174 10 m , 9.6666 10 , 0.0549kg m, 0.0512m, 3m, 7.83kg m ,

70 10 N m , 26.3158 10 , 5 10 Nm , 3.5 N , 0.15m, 0.01m.
aI J I x L m

E G N m c s c s b t

α
− − −

− − −

= ⋅ = ⋅ = ⋅ = = = ⋅

= ⋅ ⋅ = ⋅ ⋅ = ⋅ = ⋅ = =
 

The beam carries two translational elastic supports at locations 1 0.25y L= and 3 0.75y L= , 

both applied at distance1 3 0.1025x x= =  from the SC of the beam crosssection, and a 

torsional-rotational elastic support at the location 2 0.5y L= as shown in Figure 2.  

The beam is acted upon by a stationary transverse loadP with ( ) 1PPS ω = , applied 

at 0.35y L=  along the elastic axis parallel toO z− , at distance c ax x=  from y axis. Since the 

SC is eccentric with the respect to the MC along the x axis, as shown in Figure 2, the beam 
random response in the y z− plane shall be investigated consideringthe coupling between 
bending and torsional vibrations.  

Figure 3 shows the power spectral density functions of the bending deflection, H(y), as 
well asthe deflection of the MC due to torsional rotation,Ψ(y)xa, calculated at 3 7y L=  
through the exact frequency response functionsbuiltin Section 3. Results are in excellent 
agreement. Figure 3 shows that twisting contributes significantly to the deflection of the MC, 
thus confirming the importance of accurate methods to capture bending-torsional coupling 
effects in the beam response.  

6 CONCLUSIONS 

The paper has presented exact analytical solutions for the response power spectral density 
functions of beams with mono-symmetric cross section, carrying an arbitrary number of in-
span supports and attached masses, subjected to stationary loads. The solutions are obtained 



Andrea Burlon, Giuseppe Failla e FeliceArena. 

Meccanica dei Materiali e delle Strutture |  VI (2016), 1, PP. 25-32 32 
 

through two different closed-form expressions of the frequency response functions, using the 
theory of generalized functions and elementary coupled bending-torsion beam 
theory.Numerical results demonstrate the importance of bending-torsional coupling effects in 
beams under stationary loads, and the accuracy of the proposed approach. 

 

Figure 3:Power spectral densities of pure bending deflection ( ),HHS y ω  (black), anddeflection of the MC due 

to torsional rotation ( ) 2, aS y xωΨΨ  (gray), computed at 3 7y L= , with frequency response functions given 

via generalized functions (continuous line) and normal mode method (dotted line). 
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