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Abstract. The stochastic response of acoupled bending-torsion beam, carrying an arbitrary
number of supports/masses, is investigated. Usingthe theory of generalized functions in
conjunction with the elementary coupled bending-torsion beam theory, exact analytical
solutions under stationary inputs are obtained based on frequency response functions derived
by two different closed-form expressions. The analytical solutions are obtained for all
response variables, considering any number of supports/masses along the beam and arbitrary
spatial load distributions. A pertinentnumerical exampleisreported.

Sommario. Viene indagata la risposta stocastica di una trave con un numero arbitrario di
supporti elastici e masse appese,che presenta un comportamento flessionale e torsionale
accoppiato. Utilizzando la teoria delle funzioni generalizzate e la teoria elementare di
accoppiamento flessionale-torsionale, soluzioni analitiche esatte sono ottenute, per
eccitazioni stazionarie, attraverso funzioni di risposta in frequenza derivate attraverso due
diverse espressioni in forma chiusa. Le soluzioni analitiche sono ottenute per tutte le variabili
della risposta, considerando un numero arbitrario di supporti e masse lungo la trave e una
qualsias distribuzione spaziale del carico. S riportainfine unesempionumerico.

1 INTRODUCTION

The response of beams to random loads has beetywmndestigated in literature, and
some examples can be found in ref. [1-2]. Most war&ncernedbending vibration analysis
based on Euler-Bernoulli or Timoshenko beam theander the fundamental assumption
thatthe beam cross-section is doubly-symmetridhabthe shear center (SC) coincides with
the gravity center (GC).

However, beams with mono-symmetric cross sectiomgraquently employed in different
engineering applications such as wings, turbinelddaand propellers. Because, in this case,
the SC does coincide with the GC, the dynamicshesé¢ beams exhibits coupled bending-
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torsion phenomena. Indeed, bending-induced inddraks, which arise along the mass axis
(i.e. the locus of the gravity centers of the beaioss sections), are eccentric with respect to
the elastic axis (i.e. the locus of the shear e¢srieéthe beam cross sections) and, as a result,
bending is inherently coupled with twisting. Theupbng effects have generally been
described by the so-called elementary coupled benirsion beam theory [3-4], i.e.
neglecting warping effects and not consideringtastainertia and shear deformation of the
beam. These effects were also considered in othéies [5-6].

As for forced vibration analysis, using the nornmabde method Eslimy et al. [7-8]
obtained the response of a coupled bending-totsg@m when subjected to deterministic as
well asstationary, Gaussian loads. Specificallgytapplied the method to a cantilever aircraft
wing for which there is a substantial coupling betw bending and torsional vibrations.

It must be noticed, however, that all works in[ddfthrough ref.[8] generally addressed
uniform beams, with no attachments or in-span suppdhe latter are of great interest for
engineering applications but have rarely been demned in studies on coupled bending-
torsion phenomena.

This paper proposes an exact method for beams mv@ho-symmetric cross section,
carrying an arbitrary number of elastic supportd attached masses, subjected to stationary
loads. The elementary bending-torsion theory isw@red as in ref.[3-4], in conjunction with
the theory of generalized functions to handle tiseantinuities of the response variables at
the application points of supports and masses. teaalytical solutions for the response are
built based on frequency response functions ofldbam obtained, in this paper, by two
different closed-form expressions. The key stepuitd the frequency response functions is a
novel closed-form analytical expression derivedthis paper, forthe response of the beam
without response supports/masses, subjected twaailyiplaced harmonic unit force and unit
twisting moment. A numerical example will show thesponse power spectral density
functionof a beam with angular section, carryirangiational and torsional-rotational elastic
supports, under a transverse stationary load.

2 PROBLEM STATEMENT

Figure 1 shows the case under study, i.e. a uni&ireaght beam of length referred to a
right handed coordinate system, carrying an amyitnamber of elastic supports and attached
masses and subjected to a transverse distribuéeld Beam cross section is assumed to be
mono-symmetric, being its symmetric axis. The loci of the shear cenggrd mass centers of
the beam cross section are respectively the elasiscand the mass axis; the first coincides
with they-axis, while the latter is at distanggfrom y-axis. The bending deflection in tke
direction, the bending rotation about thaxis and the torsional rotation about thaxis of
the shear centers are denoted respectivelg(hyt),(y,t)andy(y,t).

The transverse distributed load, acting parall€ taz, is applied at distancg. from vy -

axis; it can be separated into a transverse lopllegipalong the elastic axis, and a distributed
torque aboudy, as shown in Figure 1. The elastic support and la¢henasses are applied

aty,, with 0<vy, <...<y, <L and stiffness parameters of fath support and properties of
thej-th mass are denoted as follows:
. kHJ_ for translational supporli,g‘,i for torsional-rotational support akgjl for bending

rotational support.
* M,is the mass],, and |, the components of the mass inertia tensor about)axe
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andy in Figure 1.

Figure 1: Beam with a mono-symmetric cross-seatamying an arbitrary number of elastic supportd an
attached masses and subjected to a transversbutistrload and distributed torque

2.1 Equations of motion

Pursuing the primary purpose of obtaining the fesgpy response functions in order to
determine the stochastic response, assume thae#m, carrying supports/masses as shown
in Figure 1, is loaded by a harmonic distributeddlof (y)e“*, and a harmonic distributed
torque g(y)e“ = f(y)x.e“, on the interval (a,b), with Osa<bs<L, wherewis the

frequency. Let beh(y,w,t) =H (y,w)d” (y,wt)=¥(y wE", the steady state response
variables. By using the elementary coupled benthingjon theory and making use of the
generalized functions, the following steady statepted equations of motion are derived:

d'H )

E|T—(mw —Ciw)H +(Mx &’ —cx i)W - P(y-y)+ > Mf 3" (y-y)+f(y)=0 (1)

j=1

-2

d'y N N
GJ v (Mw'x, —ciwx )H + (1, —cia)W =Y Pxd(y-y)+ D Mt d”(y-y)+a(y)=0 (2)
y j=1 j=1

where EI and GJ are respectively bending and torsional rigiditiesjs the mass per unit
length, I, is the polar moment of inertia per unit length abthe elastic axis, whilg and

c,are viscous damping coefficient per unit lengtipeesively in bending and in torsion, to be
assigned so that damping is proportional [8]; irs.ED-(2)0" (y-y,)is the k-th formal
derivative of Dirac’s deltaj(y - y,), while P;,Mt;and Mf, are concentrated force, twisting
moment and bending moment associated with suppodsattached massesyat and they
are given as:

P ==Ky (@[ HY) - x%(Y)]| & Mt =-k(@W(y,) 5 Mf =-k,(@0(y) ()
being H (y,),¥(y;) ande(y,) the deflection, torsional and bending rotatioryaty, , and
Ky (W), ki (w), & () frequency dependent terms given as:

Ko (@) =Ky ~M & Ky =k = (1, M x5 Ky @)=k —1, & (4)

Egs.(1)-(2)can be combined, by eliminating eitHer W, to obtain two uncoupled 6-th order
differential equations for deflection and torsionatiation:
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-6 2
dH dH dH

N LA L SOSRRRLCANRING 100 SR 1100 00 U 9 T S )
dye dy4 dyz mxaa)z i mxawz ot
aaw_'-ﬁan_ an+[7l.|J E f(4)( )_ f( )+ E g(4)( & ():0(6)
dy’ dy* 4 dy’ mx, o’ Y X, Y X, o Y mxaa)2 Y
where
Gl _, u
R._(Y)= ZP{ ~=X)3(y-y,)+ zé”(y—y,)}ZMt,d(y—y,w
X w =1
o (7)
+Z Mf, { (y-y)+—— 5(3)(y—yj)}
mX_c
R._(Y)= ZP{ S5y -y,) 2 sy - y)}
X, @’ X,
iy (8)
+2Mt { -0 (y~- y) -y~ y)}ZMr 3(y-y,)
2.2 Solutions of the equations of motion
Consider first the following equation:
aaex +,6’a4x —yazx +nX=0(y-Y,)=0 9)
dx® dx* dx? 0
The solutionXtakes the form:
6
XY, Yo) :ZQjCj +J39(y, Yo) (10)
i=1
where
Ql=cosh(\/r_1x ):Q,= sinh(/r_lx )Q,= co§(r_zx 1)

Q, :sin(\/EX); Q.= cos(/r_3X Q= sin(/r_lX );

while the particular integral is obtained Ibjathematica, after few manipulations in the
following form:

Jo (y, yo) = D[Sinh(\/r_l (y_ Yo ))\/r:\/r: (rs_rz)_ Sin(/rz 6/_ yo))/ril\/ris(’ itr )"'
+sinr, (y = Yo W/ (41| 0 (y = y)

being U() the Unit-Step function,d =a®/(45°+ 4y°a + 27an’-y’B*- 1&Lyn  and

D =—d(r, +5,)(r + 1 )(r= 1) /rafr AT s-

Starting from Eq.(9) closed-form solutions can rlydoe derived for Egs.(5)-(6), as indeed
the particular integrals associated with formalivdgives of the Dirac’s delta, which are
related to unit force and moments in Egs.(5)-(@n ceadily be obtained from Eq.(9) by
successive derivation.

(12)
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3 FREQUENCY RESPONSE FUNCTION OF BEAMSWITH SUPPORTSMASSES
VIA GENERALIZED FUNCTIONS

In this Section an exact method to build the fremyeresponse function of the beam with
supports/masses in Figure 1 will be shown.
Firstly considerthe beam in Figure 1 subjected émlthe transverse distributed lofgy)

in the interval(a,b) with 0<a<b< L. By applying the linear superposition principlbet
vector Y " (y) =[H(” o MM gy T(”] collecting all response variables of
the beam with supports/masses can be written as:

YO (y) =Q(y)c™ + > Iy, YA + Y (y) (13)

j=1

In Eq.(13), vector A‘j” :[Pj Mt, ijT collects the unknown reaction force (w),
twisting momentMmt, (w) and bending momenf (w) at locationy,; J(y,y,) is a 6x3
matrix collecting the particular integrals relatedhe response discontinuities at locatipn
built as explained in Section 2.2; . (y) are the particular integrals related to |d4g)

Yoo ) = [, 3 (v, O f ()dé (14)

where JP)(y, &) is the vector of the particular integrals relaiea unit transverse load.
Through a recursive procedure, the unknownsin Eq.(13)can be obtained as functions

the vector of integration constants” only, to finally derive the following expression
for Y (y)

YO >y) =Y () + Y iy (y) (15)
whereY (y)is a vector depending on the beam parameters antyy (r,(y) depends on the
beam parameters and the applied load (expressiensnaitted for brevity). The vector of
integration constant<'” can be determined on setting the beam boundargitcmms.
Specifically, it will be obtained by inverting &x6matrix in a closed form using
Mathematica.

An alternative exact expression of the frequenspoase functions can be built by modal
superposition. For this, exact natural frequeneiedze obtained from the eigenproblem

B(w)c=0 (16)
whereB is a 66 matrix built based on Eq.(13),where the load ddpat termY (" (y) =0
and ¢ =¢,=0 in Egs.(1)-(2). Upon computing the natural frequiesfrom Eq.(16),
corresponding exact eigenfunctions are derive@ ahosed analytical form, from Eq.(13)for
Y (y) with, again,Y"(y)=0 and ¢, =c,=0 in Egs.(1)-(2).Denotingl, and W_as the
eigenfunctions of deflection and torsional rotatioespectively,and by considering the

orthogonality condition,derived as similarly in .f81, the following expression can be
derived for the frequency response function fordieg deflection and torsional rotation

HO=3a @A) W5 erESd oY, §) (17)

n=1

where q{" (w) denotes the modal frequency response functioneaf'tmode:
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[ fIH, (] ay
(@ =& + 2 ,0)
Eq.(18)provides an insight into the contributioh&wery mode to the frequency response of
the beam, very useful for design purposes.

Frequency response function for the other respeasables can be obtained from Eq.(17)
by considering Saint-Venant and Euler-Bernoulliradheories.

Similarly the frequency response functiaf® (y) due tothe torquey(y) = f (y)x,, can be
obtained replacing in Eq.(18),,(y) withthe particular integray ., (y) ,given as

g, () = (18)

(9)

Yo () = [ 39 (y,)g(€)dé (19)

and replacing in Eq.(16}" (w) with /¥ (w) , whose expression is:

[ am[w, ]y

o (@) =0 + 2, 00,0)

g, (o) = (20)

4 RESPONSE TO RANDOM LOADS

Next, the stochastic response of the coupled bgrdirsion beam with supports and
attached masses, subjected to stationary loadyeilbbtainedusingthe frequency response
functions derived in Section 3.

4.1 Responseto concentrated loads

Consider the beam in Figure 1 subjected to a fimiember K of stationary
concentratedtransverse forPeapplied at distancex, from the elastic axis,assumedto be

statistically dependent. The power spectral denihctions of the deflectionS,, (Y, w),
andall response variables in vecté(y) :[H O M S VY T], can be obtained by the
following expressions involving the cross spectiesity functions of the forces, , (w)

K K

S (@ = XX (Y N (1Y, @)Y .y, @Oy, @)t (21)
r=1 s=1
Yi(f)* (y! yr 'a))Yi(g) (yiys’a))-'-Yi(g)* (y!yr ’a))Yi( K (y’ys ’a)):|SPrPs @}

In Eqg.(21), the asterisk denotes complex conjugattY " (y,&, w),Y® (y,&,w) are given
as Eq.(15) and its analogous fgy),whereY " (y)in Eq.(14) andY@(y) in Eq.(19)
arereplaced respectively BY’ (y,&) andJ™(y, &).

4.2 Responseto distributed loads

Assume now that the beam in Figure 1 is acted Ugyoa stationary distributed transverse
loadi(t), applied at distanc& from the elastic axis. The load israndomly varywith respect
to time, but not spatially.$, (w) denotes the power spectral density functionf(f the
power spectral density functions of all respons@abes can be obtained as follows:

S{{ (y’ a)) = |:|Yl(f) (y,&))r + Yl(g) (y’w)|2 +Yl(f)* (y,w)Y,(g) (y’w)+Yl(g)* (y,a))Y,( f) (y,a))j| Sff (a)) (22)
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whereY " (y,w),Y 9 (y,w) are given respectively as Eq.(15)and its analofmug(y) .

5 NUMERICAL EXAMPLE

Figure 2: Clamped-clamped beam with angular sect#rying elastic supports

Consider the clamped beam with angular cross sestiown in Figure 2. Properties are
chosen as follows:

| =1.017410° M J= 9.6666 1IDI,= 0.0549Kg xp= 0.051Pm, ,r@m7.83kgIm",
E=70010 NCm”* G= 26.3158 TNin°c,= B 0 Nisc,= 3BsMs 0.15m, 0.C

The beam carries two translational elastic suppartecations, =0.29_and y, =0.79_,
both applied at distance=x,=0.102% from the SC of the beam crosssection, and a
torsional-rotational elastic support at the locatyg = 0.5 as shown in Figure 2.

The beam is acted upon by a stationary transvesadPlwith S,.(«) =1, applied

aty=0.39L along the elastic axis parallel@o-z, at distancex, = x, from y axis. Since the

SC is eccentric with the respect to the MC alorgxtlaxis, as shown in Figure 2, the beam
random response in thg - zplane shall be investigated consideringthe coupbegveen
bending and torsional vibrations.

Figure 3 shows the power spectral density functiohthe bending deflectiorki(y), as
well asthe deflection of the MC due to torsionatation¥(y)x,, calculated aty=3L/7
through the exact frequency response functionsbuBection 3. Results are in excellent
agreement. Figure 3 shows that twisting contribsigsificantly to the deflection of the MC,
thus confirming the importance of accurate methimdsapture bending-torsional coupling
effects in the beam response.

6 CONCLUSIONS

The paper has presented exact analytical solufarthe response power spectral density
functions of beams with mono-symmetric cross sectearrying an arbitrary number of in-
span supports and attached masses, subjecteditmaty loads. The solutions are obtained
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through two different closed-form expressions @& tlequency response functions, using the
theory of generalized functions and elementary I=alip bending-torsion beam
theory.Numerical results demonstrate the importarideending-torsional coupling effects in
beams under stationary loads, and the accuradyeqiroposed approach.
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Figure 3:Power spectral densities of pure bendeftpdtion S, (y, a)) (black), anddeflection of the MC due

to torsional rotatiord,,,, (y, a)) Xj (gray), computed ay =3L/7, with frequency response functions given
via generalized functions (continuous line) andmamrmode method (dotted line).
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