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Abstract. Bayes estimation of extreme load values in the framework of risk and reliability 
analysis is investigated. The evaluation of extreme values of wind loadings on structures is 
performed via a combined employment of a Poisson process model for the “peak–over–
threshold” characterization and a Pareto distribution for modelling the so-called “parent 
distribution” which generates the base load values. The method is applied to the extreme 
wind speed, both for sake of identification and estimation purpose. This topic has indeed 
brought about an increasing number of studies in the last years, both for wind energy 
production assessment and also in risk and reliability analysis. This modeling is difficult due 
to the uncertainty in wind speed probability distributions. For this purpose, the paper 
proposes a novel Bayes approach for the estimation of the probability that wind speed is 
lower than a prefixed extreme value. A large set of numerical simulations are performed in 
the last part of the paper, in order to illustrate the feasibility and efficiency of the above 
estimation method, especially when compared to the classical Maximum Likelihood method.  

1 INTRODUCTION 

The recent advances in wind engineering motivated a large amount of studies focused on 
wind speed (WS) statistical distribution. At this purpose, a significant interest has been paid to 
extreme values (EV) characterization of WS, both for assessing the maximum wind energy 
production1-4 and for evaluating risk, safety or reliability5-8.  It has to be highlighted that the 
meaning of EV is herein conceived as class of p-quantiles corresponding to high values of p 
(such as the 0.95 or 0.99-quantiles), or extreme values of WS over an assigned time horizon, 
as it will be discussed in detail in Sec. III. For sake of clarity, it is recalled that the p-quantile 
is a value xp of a random variable (RV) X is such that p100% of the observed value of the RV 
fall below xp.  
It has to be outlined that extreme quantiles are generally evaluated in the "static" case, i.e. 
without explicitly taking into account time, as typically performed in most WS studies 
devoted to wind energy characterization. This means that random variables are used, instead 
of stochastic processes as would be more realistic. In the following a dynamic approach is 
pursued in terms of stochastic process.   
The forecast of extreme wind speed values, or “wind gusts”, plays a crucial role in 
environmental studies and engineering risk and reliability analysis, to which the present paper 
mainly refers: it is known, indeed, that wind turbines are designed to be “cut out”, in case of 
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intolerable high wind speeds, as a mean of protection against possible damages. It is not 
trivial to put in evidence that, with reference to the aspect of energy production, - by keeping 
in mind the “cubic rule” relationship between the wind power and the wind speed - the 
extreme upper quantiles of wind power are very sensitive to the correspondent quantiles of 
wind speed, so that an inaccurate quantiles estimation may involve relatively large errors in 
the evaluation of the expected wind energy production. 
However, it has been emphasized (not only in the specific literature of  wind energy 
investigations, but also in the general statistical literature about extreme values) that the EV 
estimation is a complex task, since large sample sizes are requested: in the case of not 
sufficient sample sizes, many models can be employed, from the classical  Weibull 
distribution to the more recent Log-logistic, Lomax or Burr distribution, which generally 
perform quite similarly in the “central” part of the real WS distribution, i.e. with about the 
same values of “central parameters” such as the mean and the median values. At the aim of 
overcoming this "model uncertainty", the paper proposes a Bayes approach for the estimation 
of the EV probability distribution, which may be suitable under various models, based upon 
the characterization of extreme WS by means of a proper Poisson process of "exceedances", 
following a methodology introduced in extreme value theory of stochastic processes, and also 
applied in4 within the framework of safety studies. In practice, this methodology can be 
regarded as strictly related to the so called "peaks-over-threshold" (POT) method3, which is 
based upon the stochastic process of the time instants in which the wind-speed exceeds a 
given threshold.  

2 WIND SPEED EXTREME VALUES EVALUATION BY MEANS OF 
STOCHASTIC PROCESSES 

As already remarked in the previous section, in the following the dynamic approach is 
adopted. Indeed, for guaranteeing the required tower safety margins, being towers built for 
expected operation lifetimes of many years, the designers have to estimate the extreme values 
of the stochastic process of wind speed, i.e. the maximum "wind gust" amplitude over a 
prefixed time horizon. Herein and in the sequel, we will denote simply as "gust" the wind gust 
amplitude over a given time interval, or an extreme value in the sense below explained.  
Firstly, let us denote by W=W(t) the stochastic process of WS values over time, where w* is a 
sufficiently high value (a “threshold” value) of WS such as that every value of WS higher 
than w* can be considered as a "gust". This value will depend on the tower structure and 
possibly on given guidelines, and is typically used for defining the "cut-off" value of the WS 
which depends on machine features, so it is left unspecified here.  
 Hence, let Nb(t) define the stochastic process of the WS values which cross the "barrier" w*, 

i.e. the number of the “peaks-over-threshold” in terms of WS3. On the basis of mild 
assumptions, generally satisfied, such as that the mean duration of each gust Uk is much 
smaller than the mean time between the successive crossings τk and that the barrier level is 
high enough, the Nb(t) process – here defined as “gust counting process” – can be described, 

as deduced in advanced books on extremal processes, e.g.9, by the well-known Poisson 
probability law p(k,t) described by:  
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In (1) bφ  is the mean number of up-crossings in the unit time. The mean and variance of the 
process Nb(t) are numerically equal and given by: 
 

                                                    tbφ  (t)]Var[N  (t)]E[N bb ==                                                    (2) 

Let us focus our attention on the gust amplitude occurring  at time Tk: such amplitude is a 
random variable, here indicated as Zk. An intuitive safety index for characterizing the extreme 
values of the stochastic process Nb(t) is the maximum gust amplitude over the interest time 
interval, which is also an obvious index of the damage that the gust process can bring about to 
the system. This can be accomplished by associating to the stochastic process Nb(t) and the 
random variables Zk (k=1,2,…, Nb(t)), the following stochastic process:  
 

Y(t) = max[Z1 , Z2 ,…, ZN ], if  N(t) ≥ 0                                              (3) 
   Y(t) = 0, otherwise.  

 
where (as in the following): N(t) = Nb(t). By assigning a “safety level” z*, the following 
safety index (SI) can be consequently defined: 
 

S(t) = P[ Y(t) < z* ]                                                               (4) 
 
Accordingly, S(t) is the probability that z* is never exceeded over (0,t) since - for every 
assigned value n of N(t) - the following relationship holds: 
 

                       [max[Z1 , Z2 ,.., Zn] < z*]  if and only if [(Z1 < z*)∩..∩( ZN < z*)]                    (5) 
 
The RV Zk are assumed to be statistically independent and identically distributed with the 
common, time-independent, cumulative distribution function:  
 

n1,2,......k  , x)( (x)FF(x) Z =∀≤== kZP                                        (6) 

 
After trivial manipulations, the following compact expression can be obtained for the above 
SI under the Poisson hypothesis for Nb(t): 
 

))](−(1= *exp[-φ  S(t) zFtb                                                        (7) 

 
In the paper, in order to model the parent distribution  F(z), a Pareto model10 is adopted, with 
positive parameter  k,  with cdf: 
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The method of using a combined model of an exceedance stochastic process and a “Pareto 
distribution” (PD) is similar to a recently adopted model11 in a different environment, i.e. for 
modelling extreme temperatures under global warming. As a function of time t, the SI it is an 
Exponential cdf, as may easily seen by expressing it as: 
 

)= texp(-qφ  S(t)                                                                 (9) 
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having defined: 
 
φ = φb = mean gust frequency (i.e., expected number of gust occurrence per  unit time); 

q=q(z*)= 1 - F(z*) = P(Zj > z*) = exceedance probability (EP) of the value z* by any single RV Zj. 

 
It has to be  highlighted that the EP neither depends on the index j, nor on time. The function 
q(z*), i.e. the EP which represents the gust cdf,  may assume various expressions. In the 
adopted PD model, inference for the above model can be adequately accomplished by 
following a Bayesian approach as shown in the following.  

3 BAYES INFERENCE FOR EXTREME VALUES PROBABILITY 
DISTRIBUTION 

Bayesian Inference is widely recognized as a powerful tool for exploiting both experimental 
data from the field (which are the only data to which classical statistical inference is referred) 
and prior knowledge, which in practice can be thought always existing in engineering 
environment. The integration of these knowledge sources makes possible to tailor an efficient 
estimation procedure and even to integrate available information, especially (but not only) 
when there is a certain lack of data .  
This approach was adopted in the relevant literature for estimating a generic quantile of the 
"extremal" process Y(t) of (3). In this section the Bayesian estimation of SI is explained.  
In particular, a “power  Beta” prior pdf is adopted in the paper for the unique parameter k of 
the PD, so that a Beta prior pdf for Q is obtained, i.e. K is distributed so that Q= F(z*)=1-
(1/z*)K  has a a Beta prior pdf . Alternatively, a Beta prior pdf can be assigned directky to Q, 
if – as reasonable – some prior information are possessed about Q. The “input data” for the 
estimation is a joint prior pdf, denoted as g(q,φ),  for interest parameters Q and Φ. As well 
known, the rationale behind the methodology is that the parameters to be estimated are 
regarded as RV (consequently, capital letter Q and Φ are adopted here for them, except when 
they are arguments of functions): so, they possess a pdf which can be integrated and updated 
with field data – denoted by D – by the below reported Bayes’ theorem: 
 

( , | ) ( , ) ( | , )g q D g q L D q Cφ φ φ=                                                     (10) 
 
where: 
- L(D|q,φ) is the Likelihood (pdf or, in the case of discrete observation as in the present case, 
“probability mass" functions), of the data D conditional to the parameters (q,φ); 
- C is a constant (with respect to the parameter values): 
 

o o
 ( , ) ( | , )C = φ φ φ

+∞ +∞

∫ ∫ g q L D q dqd                                                        (11) 

 
As well known, the best Bayes estimate - in the mean square error sense - of a given function 
τ=τ(q,φ) is provided by the posterior mean: 

o o
 ( , ) ( , | )=E[ | ] φ φ φτ τ τ

+∞+∞
° = ∫ ∫ q g q D dqdD                                                  (12) 

where τ° denotes an estimate of the generic parameter τ. 
In the interest case, the quantity to be estimated is furnished by the above SI, so that, for an 
assigned time t=t*: 
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o o
*) ( , | )=E[S| ] exp( φ φ φ

+∞+∞
° = −∫ ∫ q t g q D dqdS D                                                 (13) 

 
The Bayes inference herein described employs the well known “conjugate” priors for the RV 
Q and Φ, i.e. the Beta prior pdf for Q and the Gamma prior pdf for Φ10. These two random 
variables are moreover assumed to satisfy the hypothesis of statistically independence (a 
reasonable hypothesis, as they are generated by independent physical phenomena).  
The Beta pdf with positive parameters  r and s, is defined, for a RV assuming values on (0,1), 
as: 
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Mean value and variance of the Beta pdf are given by: 
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The Gamma pdf with positive parameters  n and δ (shape and scale parameter respectively) is 
expressed by: 
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where Г(α) is the “Euler-Gamma” Function evaluate  at α. The mean value and variance of 
the distribution are: 

 δnE =Φ][   
2][ δnXVar =  

            
By denoting with the suffix “0” the prior pdf parameters and  by the suffix “1” the posterior 
pdf parameters, the prior joint pdf g(q,φ) is given by: 
 

),;(),;(),( 0000 δφφ ngampdfsrqbetapdfqg ⋅=                                      (16) 

 
The parameters’ values (r0,s0,n0,δ0), according to the Bayesian paradigm, are inferred from 
prior information, i.e. test plant or experts’ judgements. Data collection is based upon 
recording the number of gusts N(u), occurring in the time interval u, and the marking number 
of gusts M that over cross the fixed value z*. Once the time interval u has been chosen, the 
number of gusts n=N(u) becomes a constant, and the RV M becomes a Binomial RV 
representing the number of exceedances in n independent proofs10.  
By properly combining  the prior pdf and the Likelihood  Function, according to Bayes' 
formula, it is trivial to verify that the posterior pdf of Q and φ are again Beta and Gamma 
respectively, with updated values of the parameters which are function of the measured values 
n and m; these have the role of “sufficient statistics” for the problem at hand. In particular, the 
following relation maintains: 
 

),;(),;()|,( 1111 δφφ ngampdfsrqbetapdfDqg ⋅=                                (17) 
 
where: 
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The above relationship involves the posterior conditional independence of Q and φ, once 
assigned the data D. If the following equality holds: 
 

000 srn +=                                                                                                 (19) 

 
the prior and posterior pdf can be easily expressed. In this noteworthy case, the product QΦ is 
Gamma distributed with parameters (r0,δ0) according to well known properties of the Beta 
and Gamma distribution10. Hence the product: 

 
tQH Φ=                                                                 (20) 

 
is still Gamma distributed with parameters (r0,θ0), with θ0 =δ0t  and, since S(t)=exp(-QΦt), the 
obvious relation can be stated: 

SH ln−=                                                                 (21) 
 
This implies that prior pdf for H is: 
   

0 0( ) ( ; , )g h gampdf h r ϑ=                                                         (22) 
 
and, hence, the prior pdf p(s) for the SI is a Negative Log Gamma one:  
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S is indeed a RV belonging to the interval (0,1). 
Following the same way used for updating the prior pdf g(q,φ) into the posterior pdf g(q,φ|D), 
by remembering the analytical relationship between (q,φ) and the SI, it is immediate to obtain, 
for the Safety Index SI=S(t), the following posterior pdf, for the collection data D:  
 

1 1( | ) ( ; , )p s D nlgpdf s r ϑ=                                                 (24) 
 
with:  
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This formulation permits a feasible and direct way for obtaining the Bayes estimate of SI, 
according to the well known properties of Negative Log Gamma function:  
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If the equality (19) is not satisfied, numerical methods as those reported in12 have to be 
adopted, which in any case do not involve critical tasks. It has to be remarked that both p(s|D) 
and S° depend, of course, on time, since the SI is a function of time. This dependency is 
obviously embedded in the parameter θi =δit (i=0,1). 
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4 EVALUATION OF BAYESIAN ESTIMATION EFFICIENCY BY MEANS OF  
NUMERICAL SIMULATION  
 
In order to achieve both numerical evidence of the above discussed efficiency of the Bayesian 
estimator and to demonstrate thoroughly its performances, a large set of numerical 
experiments have been performed, by means of Monte Carlo simulation12. These experiments 
are in particular focused on: 
1. evaluation of the Mean Square Error of the Bayes estimator; 
2. comparison of Bayesian estimates with the classical ones, in particular with the most 

adopted Maximum Likelihood (ML)  estimates. 
They were conducted for various sample sizes and various input data values. For the sake of 
brevity, only a significant subset of the results is reported. 
Data for the SI were generated from the assumed prior pdf on (Q, Φ), while: 
- data on the observed number of gusts over a given time interval u were generated by a 
Poisson Process of mean frequency Φ (randomly generated previously according to the prior 
pdf) in the interval (0,u); 
- data on the observed exceedance number m were generated by a Binomial RV with 
parameters (n,Q), being also Q randomly generated previously according to the prior pdf.  
The prior data, supposed to be deduced from past observations in this field, and relevant to an 
extremal WS value w*= 20 m/s, are chosen for sake of illustration as follows (the prior pdf 
are chosen equal to those in10 for sake of comparison): 
− Φ has a Gamma pdf with µ=11.0 year-1  and  σ = 0.22 year -1;   
− K has a Power Beta pdf  chosen so that Q has a Beta pdf  with µ=0.02  and  σ = 0.0275. 

 
Sample 
Size, n 

MSEB MSEL REFF 

5      0.0113      0.0394     3.4867 

15      0.0083      0.0208     2. 5060 

30      0.0065      0.0110     1.6923 

50      0.0045      0.0067     1.4889 

Table 1: Values of sample MSEB, MSEL and REFF versus sample size, for a set of N=104 
Monte Carlo random samples. 

The choice of the two parameters (n0,δ0) of  the prior Gamma pdf, and those (r0,s0) of the 
prior Beta pdf are easily obtained by inverting the relations between the mean and variance of 
these priors and the relevant parameters.  
For each sample size n, a number of N=104  replications has been performed in which the 
above RV Φ and Q were generated according to the above pdf, and the Bayes estimate of S 
was deduced. In particular, the results for various sample-sizes (n=5, n=15, n=30, n=50) are 
reported in Table 1, in terms of the classical indexes: 
ΜSEB: Mean Square Error of the Bayes estimator; 
ΜSEL: Mean Square Error of the  ML estimator; 
REFF=ΜSEL /ΜSEB. 
The “REFF” index is the well known "relative efficiency" of the Bayes estimator with respect 
to the ML estimator. The above “Mean Square Errors” have been obtained at the end of each 
simulation as the averages over the N sampled estimator’s square errors. 
It is remarked, by observing the MSEB index, that the efficiency of Bayesian estimation increases – as 
always occurs – when number of data is exiguous. Moreover, it has to be highlighted that it is very 
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well performing, much more than classic one (as the REFF values clearly put in evidence), also when 
many data are available. 

5 CONCLUSIONS 

The paper proposes an interesting approach for the estimation of the probability that wind 
speed is lower than a prefixed extreme value which might be dangerous in terms of safety. 
From a probabilistic point of view, the method is based on the POT method for describing the 
stochastic processes of WS extremes in time and a PD for the parent distribution, exploiting 
the Bayes estimation method for inference on the above probability, which allows to define a 
proper "safety index" for a wind tower. A large set of numerical simulations, performed in the 
last part of the paper, shows the absolute and relative efficiency of the proposed method of 
estimation. As a further step to be taken for future studies, it would be worthwhile to assess 
the robustness of the proposed estimation method. At this purpose, it will be suitably verified 
that this approach provides satisfactory estimates also when the true prior models are different 
from the ones -the conjugate Beta and Gamma pdf- assumed in the present work.  
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