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Abstract. Bayes estimation of extreme load values in thenéssork of risk and reliability
analysis is investigated. The evaluation of extrerdees of wind loadings on structures is
performed via a combined employment of a Poissamtgss model for the “peak—over—
threshold” characterization and a Pareto distribomi for modelling the so-called “parent
distribution” which generates the base load valu€ke method is applied to the extreme
wind speed, both for sake of identification andnestion purpose. This topic has indeed
brought about an increasing number of studies ia kast years, both for wind energy
production assessment and also in risk and religbénalysis. This modeling is difficult due
to the uncertainty in wind speed probability distriions. For this purpose, the paper
proposes a novel Bayes approach for the estimatiothe probability that wind speed is
lower than a prefixed extreme value. A large setwherical simulations are performed in
the last part of the paper, in order to illustratiee feasibility and efficiency of the above
estimation method, especially when compared teldssical Maximum Likelihood method.

1 INTRODUCTION

The recent advances in wind engineering motivatéadrge amount of studies focused on
wind speed (WS) statistical distribution. At thisrpose, a significant interest has been paid to
extreme values (EV) characterization of WS, bothassessing the maximum wind energy
productiort™ and for evaluating risk, safety or reliabifiy It has to be highlighted that the
meaning of EV is herein conceived as class of pij@s corresponding to high values of p
(such as the 0.95 or 0.99-quantiles), or extrenhgegaof WS over an assigned time horizon,
as it will be discussed in detail in Sec. lll. Fake of clarity, it is recalled that the p-quantile
is a value x of a random variable (R} is such thap100% of the observed value of the RV
fall below X,.

It has to be outlined that extreme quantiles areegdly evaluated in the "static" case, i.e.
without explicitly taking into account time, as tgplly performed in most WS studies
devoted to wind energy characterization. This méhasrandom variables are used, instead
of stochastic processes as would be more realistithe following a dynamic approach is
pursued in terms of stochastic process.

The forecast of extreme wind speed values, or “wgusts”, plays a crucial role in
environmental studies and engineering risk analéity analysis, to which the present paper
mainly refers: it is known, indeed, that wind turks are designed to be “cut out”, in case of
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intolerable high wind speeds, as a mean of prateciigainst possible damages. It is not
trivial to put in evidence that, with referencetbhe aspect of energy production, - by keeping
in mind the “cubic rule” relationship between théng power and the wind speed - the
extreme upper quantiles of wind power are very igasto the correspondent quantiles of
wind speed, so that an inaccurate quantiles estimatay involve relatively large errors in
the evaluation of the expected wind energy producti

However, it has been emphasized (not only in thecifp literature of wind energy
investigations, but also in the general statistitatature about extreme values) that the EV
estimation is a complex task, since large samptessare requested: in the case of not
sufficient sample sizes, many models can be emgdloyem the classical Weibull
distribution to the more recent Log-logistic, Lomak Burr distribution, which generally
perform quite similarly in the “central” part of@hreal WS distribution, i.e. with about the
same values of “central parameters” such as thenraed the median values. At the aim of
overcoming this "model uncertainty”, the paper josgs a Bayes approach for the estimation
of the EV probability distribution, which may beitsible under various models, based upon
the characterization of extreme WS by means ofopgar Poisson process of "exceedances”,
following a methodology introduced in extreme valheory of stochastic processes, and also
applied it within the framework of safety studies. In praetithis methodology can be
regarded as strictly related to the so called "pealer-threshold” (POT) methdwhich is
based upon the stochastic process of the timenitssta which the wind-speed exceeds a
given threshold.

2 WIND SPEED EXTREME VALUES EVALUATION BY MEANS OF
STOCHASTIC PROCESSES

As already remarked in the previous section, in filllowing the dynamic approach is
adopted. Indeed, for guaranteeing the required t®atety margins, being towers built for
expected operation lifetimes of many years, thégdess have to estimate tegtreme values
of the stochastic process of wind speed, i.e. tlagimum "wind gust" amplitude over a
prefixed time horizon. Herein and in the sequelwiledenote simply as "gust” the wind gust
amplitude over a given time interval, or an extrerakiein the sense below explained.

Firstly, let us denote by W=W(t) the stochasticqess of WS values over time, where w* is a
sufficiently high value (a “threshold” value) of W&kich as that every value of WS higher
than w* can be considered as a "gust". This valiukdgpend on the tower structure and
possibly on given guidelines, and is typically useddefining the "cut-off" value of the WS
which depends on machine features, so it is lefpaaified here.

Hence, let )§(t) define the stochastic process of the WS valugish cross the "barrier" w*,

i.e. the number of the “peaks-over-threshold” imme of WS. On the basis of mild
assumptions, generally satisfied, such as thatntban duration of each gusk s much

smaller than the mean time between the successdgsingsty and that the barrier level is
high enough, the j(t) process — here defined as “gust counting pgicesan be described,

as deduced in advanced books on extremal processgs,by the well-known Poisson
probability lawp(k,t) described by:

k
p(k,t)=PF[ N, ()= = %' E((”T:')

k=0,1,...f0

(1)
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In (1) ¢, is the mean number of up-crossings in the unietifhe mean and variance of the
process It) are numerically equal and given by:

E[N, ()] = Var[N, ()] = ¢t (2)

Let us focus our attention on the gust amplitudeuoing at time : such amplitude is a
random variable, here indicated asAh intuitive safety index for characterizing thgtreme
valuesof the stochastic process,(y is the maximum gust amplitude over the inteteae
interval, which is also an obvious index of the dgenthat the gust process can bring about to
the system. This can be accomplished by associttirige stochastic process( and the
random variables\Zk=1,2,..., N(t)), the following stochastic process:

Y(t) =max[4, %,..., 4], if NO=0 3)
Y(t) = 0,otherwise.

where (as in the following)N(t) = Ny(t). By assigning a “safety level?*, the following
safety index (Sl) can be consequently defined:

S =PLY(1) <z*] (4)

Accordingly, S(t) is the probability that z* is revexceeded over (0,t) since - for every
assigned valua of N(t) - the following relationship holds:

[max[g Z>,.., Z] < z*] if and only if[(Z,< z*)n..n( Zy < Z%)] (5)

The RV 4 are assumed to be statistically independent aexdtighlly distributed with the
common, time-independent, cumulative distributiondtion:

FX)=F(X)=P(Z, < x),0k=12,...n (6)

After trivial manipulations, the following compaekpression can be obtained for the above
Sl under the Poisson hypothesis fg(tN

S(t)=exployt(1-F(z))] ()

In the paper, in order to model the parent distidsu F(z), a Pareto mod&lis adopted, with
positive parameter k, wittdf:

1)
F(x)=1—(;j x>0 (8)

The method of using a combined model of an exceedaturhastic process and a “Pareto
distribution” (PD) is similar to a recently adoptewdet* in a different environment, i.e. for
modelling extreme temperatures under global warmisga function of time t, the Sl it is an
Exponential cdf, as may easily seen by expressiag; it

S(t) = exp(-apt) ©)
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having defined:

¢ =@ =mean gust frequency (i.e., expected number ofogasitrrence per unit time);
0=q(z*)= 1 - F(z*) = PL > z*) = exceedance probability (EP) of the value z* by single RV Z

It has to be highlighted that the EP neither ddpean the index j, nor on time. The function
q(z*), i.e. the EP which represents the gust cdiay assume various expressions. In the
adopted PD model, inference for the above model lmanadequately accomplished by
following a Bayesian approach as shown in the wailhg.

3 BAYES INFERENCE FOR EXTREME VALUES PROBABILITY
DISTRIBUTION

Bayesian Inference is widely recognized as a paweobl for exploiting both experimental
data from the field (which are the only data to ethclassical statistical inference is referred)
and prior knowledge, which in practice can be thduglways existing in engineering
environment. The integration of these knowledgecsimakes possible to tailor an efficient
estimation procedure and even to integrate availaifbrmation, especially (but not only)
when there is a certain lack of data .

This approach was adopted in the relevant liteeatar estimating a generic quantile of the
"extremal” process Y(t) of (3). In this section Bayesian estimation of Sl is explained.

In particular, a “power Beta” prior pdf is adoptedthe paper for the unique parameter k of
the PD, so that a Beta prior pdf for Q is obtainiesl, K is distributed so that QE(z*)=1-
(1/z*)¢ has a a Beta prior pdf . Alternatively, a Beta ppdf can be assigned directky to Q,
if — as reasonable — some prior information aresessed about Q. The “input data” for the
estimation is a joint prior pdf, denoted @& ,¢), for interest parameters Q add As well
known, the rationale behind the methodology is timet parameters to be estimated are
regarded as RV (consequently, capital letter Qdrade adopted here for them, except when
they are arguments of functions): so, they posags#f which can be integrated and updated
with field data — denoted by D — by the below repdmBayes’ theorem:

9(a.¢| D)= g(q@) (D] qg)y C (10)

where:

- L(D|q,9 is the Likelihood (pdf or, in the case of discreteservation as in the present case,
“probability mass" functions), of the data D comatial to the parameters ();

- Cis a constant (with respect to the parameter g3lue

+00 +00

C=[ [ 9(a.9)L(D|q.¢)dadp 11)
(o]

As well known, the best Bayes estimate - in thenrszpuare error sense - of a given function
1=1(q,9) is provided by the posterior mean:

=00 +00

r°=E[7|D]= [ [ 7(a.9)9(a¢| D)dady 21

wheret® denotes an estimate of the generic parameter
In the interest case, the quantity to be estimatddrnished by the above SI, so that, for an
assigned time t=t*:
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S=E[S|DJ= | | exptaet) d agl D dadp 113

The Bayes inference herein described employs thlekwewn “conjugate” priors for the RV
Q and®, i.e. the Beta prior pdf for Q and the Gamma ppdf for ®'°. These two random
variables are moreover assumed to satisfy the hgp® of statistically independence (a
reasonable hypothesis, as they are generated bgendent physical phenomena).

The Beta pdfwith positive parameters r and s, is defined a&V assuming values on (0,1),
as:

r(r+s) .

betapdfgr,s) = 1a-gf?, 0<g<l
pdfg;r,s) I’(r)l’(s)q @-q) q

Mean value and variance of the Beta pdf are giwen b

H :L . 0.2=IJZ —S
®Tres T TR B (res+1) [

The Gamma pdfvith positive parameters n addshape and scale parameter respectively) is

expressed by:
1 - X
ampdf(g,n,d) = x”lexr{——j.
gampdf(g,n, 9) 5T () 5

whereT'(a) is the “Euler-Gamma” Function evaluate catThe mean value and variance of
the distribution are:

H®]=nd var[X]=nd?

By denoting with the suffix “0” the prior pdf paraters and by the suffix “1” the posterior
pdf parameters, the prior joint pdf gf)jis given by:

g(d,¢) = betapdi(g; ry, ) [gampdi(¢; ny, dp) (16)

The parameters’ valuesofs,no, &), according to the Bayesian paradigm, are infefreth
prior information, i.e. test plant or experts’ jusgents. Data collection is based upon
recording the number of gudtiu), occurring in the time interval, and the marking number
of gustsM that over cross the fixed value z*. Once the tintervalu has been chosen, the
number of gustsn=N(u) becomes a constant, and the RV becomes a Binomial RV
representing the number of exceedancesiimlependent proot&

By properly combining the prior pdf and the Likelod Function, according to Bayes'
formula, it is trivial to verify that the posteriqudf of Q andg are again Beta and Gamma
respectively, with updated values of the parametéish are function of the measured values
n andm; these have the role of “sufficient statisticsf fbe problem at hand. In particular, the
following relation maintains:

9(g,¢|D) =betapdf(a;r, ) [gampdi(¢; 1, &) (17)
where:
N=l+m; §=S+N-m; m=ng+n qzljj% (18)
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The above relationship involves the posterior coodal independence of Q ang once
assigned the data D. If the following equality ®ld

No =Ty +Sp (19)

the prior and posterior pdf can be easily expredsethis noteworthy case, the producd &
Gamma distributed with parameters,&) according to well known properties of the Beta
and Gamma distributidh Hence the product:

H =Qut (20)

is still Gamma distributed with parametergfs), with 6o =3t and, since&s(t)=exp(-Qbt), the
obvious relation can be stated:
H=-InS (21)

This implies that prior pdf foH is:
g(h) = gampd{ hy.J,) (22)
and, hence, the prior pg{s)for the Sl is a Negative Log Gamma one:

1

1 [19_] ro—1
§=——-—5" /(-logs)° ", 0<s<1 (23)
ShavE el

Sis indeed a RV belonging to the interval (0,1).

Following the same way used for updating the poidirg(qg) into the posterior pdf g(@D),
by remembering the analytical relationship betw@pg) and the SI, it is immediate to obtain,
for the Safety Index SI=S(t), the following posterpdf, for the collection data D:

p(s| D) = nigpdf('s 1,9,) (24)
with:
i=nrma=dud=p b (25

This formulation permits a feasible and direct wWal obtaining the Bayes estimate of Sl,
according to the well known properties of Negatiegg Gamma function:

1

P=AsIDl=g

(26)

If the equality (19) is not satisfied, numerical theds as those reported*irhave to be
adopted, which in any case do not involve critteaks. It has to be remarked that both p(s|D)
and S° depend, of course, on time, since the &l fisnction of time. This dependency is
obviously embedded in the paramefer at (i=0,1).
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4 EVALUATION OF BAYESIAN ESTIMATION EFFICIENCY BY MEANS OF
NUMERICAL SIMULATION

In order to achieve both numerical evidence ofabeve discussed efficiency of the Bayesian

estimator and to demonstrate thoroughly its peréoroes, a large set of numerical

experiments have been performed, by means of Moatl simulatiorf. These experiments

are in particular focused on:

1. evaluation of the Mean Square Error of the Bayémesor;

2. comparison of Bayesian estimates with the classioals, in particular with the most
adopted Maximum Likelihood (ML) estimates.

They were conducted for various sample sizes andusinput data values. For the sake of

brevity, only a significant subset of the resutsaported.

Data for the Sl were generated from the assumexd pdf on (Q,®), while:

- data on the observed number of gusts over a dives intervalu were generated by a

Poisson Process of mean frequedcyrandomly generated previously according to therpr

pdf) in the intervalO,u);

- data on the observed exceedance nummbewxere generated by a Binomial RV with

parameters (n,Q), being also Q randomly generatdqusly according to the prior pdf.

The prior data, supposed to be deduced from pastredtions in this field, and relevant to an

extremal WS value w*= 20 m/s, are chosen for sdkdustration as follows (the prior pdf

are chosen equal to thosé’ifor sake of comparison):

— @ has a Gamma pdf with=11.0 year* and o= 0.22 year";

— Khas a Power Beta pdf chosen so that Q has ap8étavith 1=0.02 ard o= 0.0275.

SS‘i‘mp'e MSEB | MSEL REFF
ze,n
5 0.0113 0.0394  3.4867
15 0.0083 0.0208  2.5060
30 0.0065 0.0110  1.6928
50 0.0045 0.0067  1.4889

Table 1: Values of sample MSEB, MSEL and REFF v&sample size, for a set of N210
Monte Carlo random samples.

The choice of the two parametery,&) of the prior Gamma pdf, and thosg,%) of the
prior Beta pdf are easily obtained by inverting thkations between the mean and variance of
these priors and the relevant parameters.

For each sample size n, a number of N=I@plications has been performed in which the
above RV® and Q were generated according to the above pdftlee Bayes estimate of S
was deducedn particular, the results for various sample-sigesb, n=15, n=30, n=50 are
reported in Table 1, in terms of the classical xe$e

MSEB:Mean Square Error of the Bayes estimator;

MSEL Mean Square Error of the ML estimator;

REFF=MSEL/MSEB.

The "REFF” index is the well known "relative effesicy” of the Bayes estimator with respect
to the ML estimator. The above “Mean Square Errbia/e been obtained at the end of each
simulation as the averages over the N sampled aftiia square errors.

It is remarked, by observing the MSEB index, tih&t ¢fficiency of Bayesian estimation increases — as
always occurs — when number of data is exiguougebier, it has to be highlighted that it is very
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well performing, much more than classic one (asREEF values clearly put in evidence), also when
many data are available.

5 CONCLUSIONS

The paper proposes an interesting approach foestiemation of the probability that wind
speed is lower than a prefixed extreme value whigljht be dangerous in terms of safety.
From a probabilistic point of view, the method &sbd on the POT method for describing the
stochastic processes of WS extremes in time and éoPthe parent distribution, exploiting
the Bayes estimation method for inference on tlevalprobability, which allows to define a
proper "safety index" for a wind tower. A large séhumerical simulations, performed in the
last part of the paper, shows the absolute andvelafficiency of the proposed method of
estimation. As a further step to be taken for faitstudies, it would be worthwhile tssess
the robustness of the proposed estimation methbthié\purpose, it will be suitably verified
that this approach provides satisfactory estimal®s when the true prior models are different
from the ones -the conjugate Beta and Gamma psifiasd in the present work.
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