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Abstract. This paper deals with the problem of determining the nonlinear response of a plate 
endowed with fractional derivative elements and exposed to random loads. It is shown that an 
approximate solution of the nonlinear fractional partial differential equation governing the 
plate vibrations can be obtained via a statistical linearization based approach. The approach 
is implemented by employing a time-dependent representation of the response involving the 
eigen-functions of the linear problem. This representation allows deriving a nonlinear 
fractional differential equation governing the variation of the time-dependent part of the 
response, which is linearized in a mean square sense. A Boundary Element Method is 
implemented for conducting relevant Monte Carlo simulations. The simulation is done in 
conjunction with a Newmark integration scheme for calculating the response in the time 
domain induced by spectrum compatible realizations of the excitation. Comparisons between 
the approaches establish the reliability of the proposed linearization scheme. 

Sommario. La memoria affronta il problema del calcolo della risposta di una piastra 
nonlineare sollecitata da un carico aleatorio e comprendente un elemento frazionario. Si 
dimostrate che le equazioni che governano le oscillazioni della piastra possono essere risolte 
approssimativamente mediante una tecnica di linearizzazione statistica. Tale metodologia è 
implementata utilizzando una rappresentazione della risposta dipendente dal tempo mediante 
le auto-funzioni del corrispondente problema lineare. Si deriva una equazione differenziale 
frazionaria nonlineare che governa la parte della risposta dipendente dal tempo e risolta 
tramite linearizzazione statistica. La memoria sviluppa anche una metodologia basata sul 
metodo degli elementi al contorno e sul metodo di Newmark per condurre simulazioni di tipo 
Monte Carlo. Il confronto numerico conferma l’affidabilità dell’approccio proposto. 
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1 INTRODUCTION 

Currently, fractional calculus is employed in a number of disciplines as diverse as electrical 
engineering, chemistry and biology [1]. Structural mechanics has also taken advantage of 
fractional calculus. Indeed, it has become a quite established tool for describing the 
viscoelastic behaviour of materials since the pioneering works of Nutting [2] and Gemant [3], 
and the theoretical contribution of Bagley and Torvik [4]. The review article by Rossikhin and 
Shitikova [5] provides a broad view on the use of fractional calculus in solid mechanics 
considering a number of problems involving single-degree-of-freedom oscillators, multi-
degree of freedom systems, beams and plates excited by deterministic loads. 
In this paper, the problem of determining the large displacements of a nonlinear plate 
endowed with a fractional derivative element and excited by a random load is addressed. An 
approximate statistical linearization solution is developed for estimating the response statistics 
and its reliability is assessed against relevant Monte Carlo data. 

2 PRELIMINARY REMARKS ON FRACTIONAL OPERATORS 

A number of representations, all generalizing the operators of differentiation and of 
integration, are available in the open literature [1]. In this paper, consider the representations 
of Riemann-Liouville (RL) and Grünwald-Letnikov (GL) which are widely used in the 
context of visco-elasticity. 
The important concept underlining the definition of fractional derivative relates to the 
definition of fractional integral which is obtained as a convolution of a function w(t) with a 
power law kernel. That is, 
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with Γ(γ) being the Gamma function. Clearly, for integer values of the power law γ = n the 
Gamma function renders the factorial of the integer number, and thus eq. (1) provides the 
classical n-fold integral. The RL fractional derivative is constructed by differentiating eq. (1) 
m times. That is, 
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Therefore, the fractional derivative is calculated by first integrating the function (m-γ) times, 
and then by differentiating the result m times. 
The GL representation [6] is given by the equation 
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Such a representation affords the implementation of algorithms for the numerical computation 
of fractional derivatives. Indeed, the series in eq. (3) can be expanded and the following series 
representation of the GL derivative can be derived: 
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where GLk are calculated recursively by the relationship  
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Eq. (4) describes the G1-algorithm that is used in this paper for treating numerically terms 



G. Malara e P.D. Spanos. 

Meccanica dei Materiali e delle Strutture |  VI (2016), 1, PP. 17-24  19 
 

with fractional derivatives. Such an algorithm reflects readily the fading memory property of 
the fractional derivative through the quantity (k-γ-1)/k < 1. 

3. LARGE PLATE DISPLACEMENTS 

3.1 Equations governing the large plate displacements 

Consider a rectangular plate of sides a and b, with mass density ρ, thickness h, Young 
modulus E, and flexural stiffness D. The plate is exposed to a transverse load q=q(x,y,t) which 
depends on the space coordinates (x,y), and on the time variable t and is endowed with a 
fractional derivative element of order γ and constant damping µ. Then, its transverse 
displacement u=u(x,y,t) is governed by the equation of motion 
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where )/2//( 222224 yxyx ∂∂∂+∂∂+∂∂=∇  is the biharmonic operator, and ϕ = ϕ(x,y,t) is the 
Airy stress function that is governed by the equation 
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The load is assumed of a separable kind, so that 
 )(),(),,( tfyxptyxq = , (8) 
where p(x,y) is a deterministic function, and f(t) is a random process of a given power spectral 
density function S(ω) and with autocorrelation function 
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Eq. (6) allows investigating the vibrations of an elastic plate into a viscous medium or on a 
viscoelastic foundation [5]. In this context, the fractional derivative operator allows 
introducing simultaneously stiffness and damping elements so that γ = 0 and γ = 1 represent 
the case, respectively, of a linear spring and of a viscous damper acting on the plate. 

3.2 Approximate plate response determined by a statistical linearization-based approach 

Currently, an exact solution of eq. (6) is unavailable. Therefore, an approximate solution is 
sought via a statistical linearization based approach [7]. For this purpose, the response of the 
system is represented by Galerkin expansions of the vertical displacement and of the stress 
function having time-dependent amplitudes. Specifically, 
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with Px and Py being total tension loads applied, respectively, on the sides x = 0, a and y = 0, b 
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 Further, the eigen-functions Umn and φmn relate to the linear 

problem only, depend upon the specific boundary conditions and are orthogonal to each other. 
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That is, 

 nlmkA klmnA klmn ab
dAdAUU δδϕϕ 4== ∫∫∫∫ , (12) 

with δmn denoting the Kronecker delta (1 for m = n, 0 otherwise), and A denoting the plate 
surface. Next introduce the quantities 

∫∫ ∂
∂=

A MN
mn

xx dAU
x

U
nmNMR

2

2

),,,(  and ∫∫ ∂
∂=

A MN
mn

yy dAU
y

U
nmNMR

2

2

),,,( , (13) 

Further, substituting eq. (10) and (11) into eq. (6) and (7), doing algebraic manipulations 
reflecting error projection in the space of eigen-functions, and observing that the stress 
function amplitudes w(2)

mn can be expressed in terms of wmn, a nonlinear fractional ordinary 
differential equation for the time-amplitudes wmn is found. Specifically, 
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and ωMN denotes the natural frequency of the linear plate. An approximate solution of eq. (14) 
is sought by replacing this nonlinear system by the equivalent linear system 
 )/()(4)/( 2

,0 habtfPwwDhw MNMNMNeqMNtMN ρωρµ γ =++ɺɺ , for M, N = 1,2,… (17) 

This linear system comprises an equivalent stiffness determined by minimizing the error 
between the nonlinear system and the linear one in a mean square sense. That is, it is found as 
the solution of the minimization problem 
 0/ 2

,
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where ε is the error between the linear and the nonlinear system given by the equation 
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Eq. (18) can be recast in the form 
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where 
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and HMN(ω) is the transfer function associated with eq. (17). That is, 
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After determining the equivalent stiffness, the response variance is readily determined via the 
equivalent linear system. Specifically, the variance is computed by the equation 
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and the frequency spectrum of the transverse displacement at a certain point is computed by 
the equation 
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3.3  Plate response estimated by Monte Carlo simulation 

The numerical solution of the nonlinear fractional partial differential equations (6) - (7) is 
determined by a Boundary Element Method (BEM) based algorithm in the formulation 
proposed by Katsikadelis and Nerantzaki [8]. The key concept is to estimate the plate 
response via a time-varying representation of the solution of a classical linear BEM problem. 
Specifically, the approach is developed by considering the solution of the linear problems 
 ),,(1

4 tyxbu =∇ , (25) 
and 
 ),,(2

4 tyxb=∇ ϕ . (26) 
In this context, b1(x,y,t) and b2(x,y,t) are space-time dependent fictitious loads, which are 
identified by BEM. 
The solution of the problem (25) has the integral representation [8] 
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where ε = 2π or π if the point P is inside the domain A or on the boundary Γ respectively, and 
the other quantities are given in Ref. [8]. 
Further, the equation 
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holds. Eq. (27) and (28) can be used for estimating the unknown boundary quantities by 
introducing the associated boundary conditions. For this purpose, the plate domain and 
boundary are discretized and eq. (27) and (28) are collocated at boundary points. By doing so, 
the linear system of equations 
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is derived. The sub-matrices composing the first two rows are determined by the boundary 
conditions. The ones composing the last two rows are estimated from the discretized 
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counterparts of eq. (27) and (28) via Gaussian integration over the domain and the boundary. 
System (29) allows determining the boundary quantities in terms of the fictitious load b1. 
Thus, the response of the plate can be calculated by the equation: 
 11bGu = , (30) 

where G is a known matrix, b1 is a vector containing the values of the fictitious load at each 
point of the domain and u is a vector containing the response at that points. A similar 
procedure can be used for representing the stress function: 
 22bG=φ , (31) 

where it is observed that the only difference with the determination of u relates to the different 
boundary conditions. 
The representation obtained in this manner is used for collocating the displacements and stress 
values into the original equations (6) - (7) to derive a set of fractional nonlinear ordinary 
differential equations for the fictitious loads b1 and b2. That is, 

 qGGGGGGFbDbGbGh
xyxyyyyyxxxxt =−++ ),,,,,(D

,2,1,2,1,2,11110111

γµρ ɺɺ , (32) 

and 
 ),,(

,1,1,122 xyyyxx
GGGEFb = , (33) 

where F1 and F2 are nonlinear functions encapsulating the nonlinear elements of the original 
system. 
The numerical solution of this fractional differential equation is obtained by a Newmark based 
algorithm implemented in conjunction with the G1 - algorithm of the GL fractional derivative. 
Specifically, the incremental equation of motion associated with eq. (32) is 
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and GLk are coefficients arising from the application of the G1 algorithm for the calculation of 
the fractional derivative [9]. Considering the fact that the fractional derivative calculation 
involves both present and past values of the response, this equation is recast as follows: 
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This form of the incremental equation of motion can be used with a classical Newmark 
algorithm for calculating the response of a system. The calculations are done by incorporating 
only a limited number of terms in the computation of the past values. In this regard, numerical 
studies have shown that including about 200 past values is sufficient for obtaining a reliable 
estimate. 

4 NUMERICAL RESULTS 

Computations are discussed herein considering large vibrations of a square plate exposed to a 
uniform random load. In this context, the time-dependent part of the load is compatible with a 
coloured white noise spectrum given by the equation 
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with ϖ = ω/ωp being a normalized frequency spectrum, (ωp denoting the peak frequency of 
the spectrum), and C, k1, c1, k2 and c2 being shape parameters. This particular spectrum can be 
regarded as the output of a cascade of two linear filters. 
The geometric and material properties of the plate are summarized in Table 1, while the 
spectral parameters are shows in Table 2. In this regard, note that the excitation has a peak 
spectral period of 5 s and a standard deviation of 50 kN/m, while the quantity p(x,y) = 1. The 
numerical computations pertain to the case of simply supported stress – free edges 
investigated also by Katsikadelis and Nerantzaki [8]. 
 

a = b h E ρ ν µ 
10 m 0.1 m 2.1×1011 Pa 2355 kg/m3 0.3 5×105 N/(m/s)γ 

Table 1. Geometrical and material properties of the plate considered in the numerical 
computations. 

 
k1 c1 k2 c2 

0.97 0.20 3.44 2.32 
Table 2. Parameters of the normalized coloured white noise spectrum given by eq. (37). 

 
Monte Carlo simulations and statistical linearization solutions are produced for the proposed 
case study in conjunction with various values of the fractional derivative order. The Monte 
Carlo data are obtained by synthesizing spectrum compatible realizations of the plate load and 
then implementing the BEM method with the Newmark algorithm. The numerical data are 
used for estimating the standard deviation of the plate response along the mid-span of the 
plate (x = a/2, 0 ≤ y ≤ b) and the power spectral density function of response at the centre of 
the plate (x = a/2; y =  b/2). The statistical linearization solution is estimated considering the 
appropriate eigen-functions associated with the boundary conditions. 
Figures 1 and 2 show relevant numerical results. It is seen that the approximate solution is in 
good agreement with the numerical computation. The agreement is irrespective of the 
fractional derivative order. Further, not only the statistics but also the spectral content of the 
response is captured quite well over the entire frequency domain. 

5 CONCLUDING REMARKS 

This paper has developed an approximate approach for determining the nonlinear response of 
a plate endowed with a fractional derivative element and excited by a random load. The 
method is based on a statistical linearization scheme and relies on the determination of an 
equivalent linear system replacing the original one in a specified sense. Further, the paper has 
developed a BEM – Newmark based numerical algorithm for determining the nonlinear 
response. The numerical results have shown that the proposed approximate approach provides 
a quite good estimate of the response statistics, and captures well the spectral content of the 
response. The quality of the approximation is irrespective of the fractional derivative order. 
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Figure 1. Standard deviation of the vertical plate displacement along the plate width considering various 

fractional derivative orders γ. Monte Carlo data (circles); statistical linearization solution (continuous line); 
linear solution (dotted line). 

 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4 5

S(ω)
Smax

ω/ωp

γ = 1.25

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4 5

S(ω)
Smax

ω/ωp

γ = 1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4 5

S(ω)
Smax

ω/ωp

γ = 0.75

 
Figure 2. Power spectral density function of the vertical plate displacement calculated at the centre of the plate 
considering various fractional derivative orders γ. Monte Carlo data (circles); statistical linearization solution 

(continuous line). 
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