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Abstract. This paper deals with the problem of determinimg nonlinear response of a plate
endowed with fractional derivative elements andosgp to random loads. It is shown that an
approximate solution of the nonlinear fractionalrppal differential equation governing the
plate vibrations can be obtained via a statistiltaéarization based approach. The approach
is implemented by employing a time-dependent reptason of the response involving the
eigen-functions of the linear problem. This repregagon allows deriving a nonlinear
fractional differential equation governing the vation of the time-dependent part of the
response, which is linearized in a mean square eseAs Boundary Element Method is
implemented for conducting relevant Monte Carlo wdatnons. The simulation is done in
conjunction with a Newmark integration scheme falcglating the response in the time
domain induced by spectrum compatible realizatiointhe excitation. Comparisons between
the approaches establish the reliability of thegmsed linearization scheme.

Sommario. La memoria affronta il problema del calcolo delisposta di una piastra
nonlineare sollecitata da un carico aleatorio e gmendente un elemento frazionario. Si
dimostrate che le equazioni che governano le @adhi della piastra possono essere risolte
approssimativamente mediante una tecnica di lirezaZione statistica. Tale metodologia é
implementata utilizzando una rappresentazione didlgosta dipendente dal tempo mediante
le auto-funzioni del corrispondente problema lirea®i deriva una equazione differenziale
frazionaria nonlineare che governa la parte deligposta dipendente dal tempo e risolta
tramite linearizzazione statistica. La memoria gppa anche una metodologia basata sul
metodo degli elementi al contorno e sul metodoalwidark per condurre simulazioni di tipo
Monte Carlo. Il confronto numerico conferma I'atildilita dell’approccio proposto.
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1 INTRODUCTION

Currently, fractional calculus is employed in a m@nof disciplines as diverse as electrical
engineering, chemistry and biology [1]. Structuma¢chanics has also taken advantage of
fractional calculus. Indeed, it has become a qeistablished tool for describing the
viscoelastic behaviour of materials since the paomg works of Nutting [2] and Gemant [3],
and the theoretical contribution of Bagley and Tlof4]. The review article by Rossikhin and
Shitikova [5] provides a broad view on the use micfional calculus in solid mechanics
considering a number of problems involving singégpeke-of-freedom oscillators, multi-
degree of freedom systems, beams and plates ekgiteeterministic loads.

In this paper, the problem of determining the ladisplacements of a nonlinear plate
endowed with a fractional derivative element andited by a random load is addressed. An
approximate statistical linearization solution evdloped for estimating the response statistics
and its reliability is assessed against relevamteé&arlo data.

2 PRELIMINARY REMARKS ON FRACTIONAL OPERATORS

A number of representations, all generalizing theerators of differentiation and of
integration, are available in the open literature [n this paper, consider the representations
of Riemann-Liouville (RL) and Grinwald-Letnikov (GLlwhich are widely used in the
context of visco-elasticity.

The important concept underlining the definition foéctional derivative relates to the
definition of fractional integral which is obtained a convolution of a function(t) with a
power law kernel. That is,

1 ¢t w(r) S
oDy ) '[O(t ) dr, fory>0, (1)
with T'(y) being the Gamma function. Clearly, for integeluea of the power law =n the
Gamma function renders the factorial of the integember, and thus eq. (1) provides the
classicaln-fold integral. The RL fractional derivative is &iructed by differentiating eq. (1)
mtimes. That is,

m t
rpr=_ Lt d | WD 47 mei<p<m @)

N o T iy o L
Therefore, the fractional derivative is calculabdfirst integrating the functiomgy) times,
and then by differentiating the resnittimes.
The GL representation [6] is given by the equation
m=1 oK) (VY t (M
crwy =y O, L WO
o M(k+l=-p) T(m=)y)o(t-7)
Such a representation affords the implementaticadgudrithms for the numerical computation
of fractional derivatives. Indeed, the series in(8) can be expanded and the following series
representation of the GL derivative can be derived:

dr, ml<y<m. (3)

SD/w(t) = lim At 7> GLw(t - kAt) (4)
k=0
whereGLy are calculated recursively by the relationship
GL, :k_i‘(’_lst_l; GL, =1. (5)

Eq. (4) describes the Gl-algorithm that is usethis paper for treating numerically terms
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with fractional derivatives. Such an algorithm eets readily the fading memory property of
the fractional derivative through the quantityy(1)/k < 1.

3. LARGE PLATE DISPLACEMENTS

3.1 Equations governing the large plate displacemén

Consider a rectangular plate of sidesand b, with mass density, thicknessh, Young
modulusE, and flexural stiffnesB. The plate is exposed to a transverse bpagix,y,t) which
depends on the space coordinateg),( and on the time variableand is endowed with a
fractional derivative element of order and constant damping. Then, its transverse
displacementi=u(x,y,t) is governed by the equation of motion
2 2 2 2 2 2 2
e 7
dy® o0x~ 0x° oy 0xdy oxoy

ot? ©)

where 0* = (0 /0x* + 8% / 0y® + 20% / 0xdy ) is the biharmonic operator, afd= ¢(x,y,t) is the
Airy stress function that is governed by the eqrati

O'p=E CKTRY _0%ud?u )
oxdy ) ox® ay? |
The load is assumed of a separable kind, so that
a(x,y,t) = p(x, y) £ (1), (8)

wherep(x,y) is a deterministic function, arift) is a random process of a given power spectral
density functiorS(w) and with autocorrelation function

< F-1) 1 (t-1)>= [ S(@)expladr, - 1,)ldw. ©)

Eq. (6) allows investigating the vibrations of dastic plate into a viscous medium or on a
viscoelastic foundation [5]. In this context, theadtional derivative operator allows
introducing simultaneously stiffness and dampingrednts so that=0 andy = 1 represent
the case, respectively, of a linear spring andwéeous damper acting on the plate.

3.2 Approximate plate response determined by a statical linearization-based approach

Currently, an exact solution of eq. (6) is unauaia Therefore, an approximate solution is
sought via a statistical linearization based apghdd]. For this purpose, the response of the
system is represented by Galerkin expansions of/¢ical displacement and of the stress
function having time-dependent amplitudes. Spedaiifjc

u= E W,,,(OU . (X Y), (10)
and |
P.y? Pyx2 (2)
=X 4+ 2 4+ w(t X, Y), 11
2= on T 2ah m§vn o (DD nn (X, Y) (11)

with Px andPy being total tension loads applied, respectivetythe sidex = 0,a andy = 0,b
of the plate andd =>'>". Further, the eigen-functiongy, and pm, relate to the linear

mn  m=1 n=1

problem only, depend upon the specific boundaryitmms and are orthogonal to each other.
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That is,

[[UmUdA= jA¢mn¢kldA— O (12)

with Jmn, denoting the Kronecker delta (1 for = n, O otherwise), and denoting the plate
surface. Next introduce the quantities

2]
R.(M,N,mn) = jj m"UMNdAandRW(M,N,m,n):”AaaL;g‘“UMNdA, (13)

Further, substituting eq. (10) and (11) into eq. 46d (7), doing algebraic manipulations
reflecting error projection in the space of eigandtions, and observing that the stress
function amplitudesv®®,, can be expressed in termsvaf,, a nonlinear fractional ordinary
differential equation for the time-amplitudwsﬂn is found. Specifically

Wi +%0DtyWMN +wh2ANWMN - ( ZwmnR(x(M N,m, n)+ Z mnRyy(M N,m, n)J

aboh (14)
4
W, W, W .1 (M N m,nk,l, pq)= f(t forM,N=12...
abp;;% kl "V pq ( pq) m MN ()
where
02U, 0°9; 02U, 0°9; 02U, 0°9,
I M yN ,m,l’],k,|, ) = o ! + mn J _2 mn U U dA
( p.d) .ZJ:J.J.A X ay ™ Tay o oM ady axdy " (15)
azu aZU azu aZU a4¢i' 62¢r 62¢i- -1
”A ' g - 4 ”A a2 it T2 A dAl
0x0y 0x0y ox* ody ox“ady ox-oy 0x0y

P = [[, PO YUy DA, (16)
andwwy denotes the natural frequency of the linear plateapproximate solution of eq. (14)
is sought by replacing this nonlinear system byetyagivalent linear system
W,y + 1 1(o0),D/ Wy, + a)iqMNWMN =4BR,, f(t)/(phab), forM,N=1,2,... (17)
This linear system comprises an equivalent stindstermined by minimizing the error

between the nonlinear system and the linear omeni@an square sense. That is, it is found as
the solution of the minimization problem

0<e*>/0afy, =0,forM,N=1,2,... (18)
whereg is the error between the Iinear and the nonlisgatem given by the equation
mn P aZUmn
gZO"ﬁINWMN_ ( Z mn ’UMN>+gyZWmn< dy 2 1Y MN >J
(19)
ZZZwmnwk,wpql(M N.m,nk,I,pa) - aZwWy; forM,N=12..
abp mn k| pq
EqQ. (18) can be recast in the form
1 P P
X M,N,m, X M,N,m,
eqMN a)AZAN abph PMN S\/]N n ; mnS\/IN,mn|: b Rxx( m n) + a Ryy( m. n):‘

4\ E 1
- (j Zzz I:)mnpkl qu(SMN,mnSkl,pq + S\/IN,kI Smnpq + SMN,pqun,kI) (20)

ab th MNS\/IN MN mn k!l pq
x| (M ,N,m,nk,l, p,q); forM,N=12...
where
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S = | Huy (“S(@H (@), (21)
andHyn(w) is the transfer function _associated with eq. (That is,
Hon (@) == 07 + ui@)? 1(oh) + | (22)

After determining the equivalent stiffness, thep@sse variance is readily determined via the
equivalent linear system. Specifically, the vareieccomputed by the equation

bph] 2.2 PPV s S - (23)

and the frequency spectrum of the transverse aﬁepk—xnt at a certain point is computed by
the equation

o’ (X, y) =<u®*(x,y) >—(

mn k,l

S Xy w= ( ] S(w)zz PV Y H i (@) H (@) - (24)

3.3 Plate response estimated by Monte Carlo simuian

The numerical solution of the nonlinear fractiopalrtial differential equations (6) - (7) is
determined by a Boundary Element Method (BEM) baaggpbrithm in the formulation
proposed by Katsikadelis and Nerantzaki [8]. The kencept is to estimate the plate
response via a time-varying representation of thetisn of a classical linear BEM problem.
Specifically, the approach is developed by consigethe solution of the linear problems
O%u=b(x,y,1), (25)
and
0% =b,(x,y,1). (26)
In this context,b;(x,y,t) and bx(x,y,t) are space-time dependent fictitious loads, wlich
identified by BEM.
The solution of the problem (25) has the integepkesentation [8]

au(P) = [ A,hdA= [ A+ Ay, + ADPu+ A, (07U) s, (27)
A r

wheree = 2 or =t if the pointP is inside the domaiA or on the boundary respectively, and
the other quantities are given in Ref. [8].
Further, the equation

€07U(P) = [ A,hdA- [ A D%+ A, (0%),ds (28)

holds. Eqg. (27) and (28) can be used for estimatimegunknown boundary quantities by
introducing the associated boundary conditions. this purpose, the plate domain and
boundary are discretized and eq. (27) and (28¢@ltecated at boundary points. By doing so,
the linear system of equations

(A [A] 101 [AJ] {u} Bh [0
[Aul (A2 (A [0 | {u} [_ (B,

[Ad (AL [AG TAJ]] {02 [ 7] {0} [03]
o 0 [Ad [AJ{O))) Lo e

is derived. The sub-matrices composing the firsi taws are determined by the boundary
conditions. The ones composing the last two rows estimated from the discretized

[0,] (29)
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counterparts of eq. (27) and (28) via Gaussiargraten over the domain and the boundary.
System (29) allows determining the boundary quiastitn terms of the fictitious loal;.
Thus, the response of the plate can be calculatéidebequation:

u=Gb, (30)

whereG is a known matrixb; is a vector containing the values of the fictisdoad at each
point of the domain and is a vector containing the response at that poiAtsimilar
procedure can be used for representing the stuestidn:

@Y= ibza (31)

where it is observed that the only difference wiith determination af relates to the different
boundary conditions.

The representation obtained in this manner is tmecbllocating the displacements and stress
values into the original equations (6) - (7) toidera set of fractional nonlinear ordinary
differential equations for the fictitious loadsandb,. That is,

phG, b, + 4G Db, + Db, - ST(CHAC A CRIRICIWAC I C I L P (32)
and
b, =EF,(G,,,.G,,,.G,.,) (33)
whereF; andF, are nonlinear functions encapsulating the nonfimé@ments of the original
system.

The numerical solution of this fractional differetequation is obtained by a Newmark based
algorithm implemented in conjunction with the Galgorithm of the GL fractional derivative.
Specifically, the incremental equation of motios@sated with eq. (32) is

PG, (BB (t;) + LAY G, [P + DAB (1) - AF, () = Ag(t,), (34)
where _
P=Y GLAB(, ~kat) +GLB(0). (35)

andGLy are coefficients arising from the application loé {G1 algorithm for the calculation of
the fractional derivative [9]. Considering the fabhat the fractional derivative calculation
involves both present and past values of the respdhis equation is recast as follows:

PG, (A, (1) + 4t G, (A, (t) + DAb, () - AF () =

i-1 (36)
= Aq(t) - 1ot G, 1S GLAb, (4 ~kAt) +GLb, (0)}

This form of the incremental equation of motion da@m used with a classical Newmark
algorithm for calculating the response of a systéhe calculations are done by incorporating
only a limited number of terms in the computatidrihe past values. In this regard, numerical
studies have shown that including about 200 pdstegas sufficient for obtaining a reliable

estimate.

4 NUMERICAL RESULTS

Computations are discussed herein considering Mhgations of a square plate exposed to a
uniform random load. In this context, the time-dwagent part of the load is compatible with a
coloured white noise spectrum given by the equation
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é((U) - Cw’ ,
[(@® - k1)2 + (Cl(U)Z][((U2 - k2)2 + (sz)z]
with @ = w/wp being a normalized frequency spectrum, (lenoting the peak frequency of
the spectrum), an@, ki, ¢;, ko andc, being shape parameters. This particular spectambe
regarded as the output of a cascade of two linkeirst
The geometric and material properties of the p&ate summarized in Table 1, while the
spectral parameters are shows in Table 2. In #gard, note that the excitation has a peak
spectral period of 5 s and a standard deviatiosOdtN/m, while the quantitp(x,y) = 1. The
numerical computations pertain to the case of simglipported stress — free edges
investigated also by Katsikadelis and Nerantzaki [8

(37)

a=b h E p v u
10m 0.1m 2.1x10" Pa 2355 kg/mi 0.3 5x10° N/(m/s)
Table 1. Geometrical and material properties ofplage considered in the numerical
computations.

kl Cy k2 Co
0.97 0.20 3.44 2.32
Table 2. Parameters of the normalized colouredentise spectrum given by eq. (37).

Monte Carlo simulations and statistical lineariaatsolutions are produced for the proposed
case study in conjunction with various values & fractional derivative order. The Monte
Carlo data are obtained by synthesizing spectrumpatible realizations of the plate load and
then implementing the BEM method with the Newmaldodathm. The numerical data are
used for estimating the standard deviation of tlaepresponse along the mid-span of the
plate k =a/2, 0<y<b) and the power spectral density function of resgoat the centre of
the plate X =a/2; y = b/2). The statistical linearization solution is asted considering the
appropriate eigen-functions associated with thendaty conditions.

Figures 1 and 2 show relevant numerical resulis. $een that the approximate solution is in
good agreement with the numerical computation. &lgeeement is irrespective of the
fractional derivative order. Further, not only ttatistics but also the spectral content of the
response is captured quite well over the entirgueacy domain.

5 CONCLUDING REMARKS

This paper has developed an approximate approaatetermining the nonlinear response of
a plate endowed with a fractional derivative eletmamd excited by a random load. The
method is based on a statistical linearization mehand relies on the determination of an
equivalent linear system replacing the original ona specified sense. Further, the paper has
developed a BEM — Newmark based numerical algoritomdetermining the nonlinear
response. The numerical results have shown thairtposed approximate approach provides
a quite good estimate of the response statistias,captures well the spectral content of the
response. The quality of the approximation is peesive of the fractional derivative order.
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Figure 1. Standard deviation of the vertical pdigplacement along the plate width consideringoregi
fractional derivative orders Monte Carlo data (circles); statistical lineatiaa solution (continuous line);
linear solution (dotted line).
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Figure 2. Power spectral density function of thetigal plate displacement calculated at the ceotttbe plate
considering various fractional derivative ordgronte Carlo data (circles); statistical lineatiaa solution
(continuous line).
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