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Abstract. The assessment of in-situ concrete strength isyastep for the evaluation of the
safety of any existing RC building. The distribataf concrete strength in a structure can be
reasonably assumed to be a realization of a randietd with a given correlation function.
Nevertheless, all current approaches used in pcacfor the assessment of in-situ concrete
strength typically neglect this aspect. This warkspnts a probabilistic tool to estimate lower
tolerance limits for the evaluation of a given pantile of the population of concrete strength
with a pre-established confidence level taking iatxount the spatial correlation of the
samples. The basic assumption is that concretagiinels modelled as a Gaussian random
field with a known correlation function. The resulire a generalization of the traditional
tolerance intervals for uncorrelated samples. Twareples are furthermore presented to
illustrate the potential loss of confidence if agation of core test values is neglected.

Sommario. La valutazione della resistenza in-situ di calogsti € un’operazione cruciale
per qualsiasi valutazione di sicurezza strutturdleedifici in CA esistenti. La distribuzione
della resistenza del calcestruzzo in una struttowa essere vista come una realizzazione di
un campo stocastico con una propria funzione drelazione. Tale aspetto viene tuttavia
ignorato da tutti gli approcci attualmente adottgier la valutazione della resistenza dei
calcestruzzi in-situ. Questo documento fornice simomento probabilistico per la stima di
limiti di tolleranza inferiori per la valutazionei din fissato percentile della popolazione delle
resistenze in-situ del calcestruzzo, dato un fossiatello di confidenza e tenendo in
considerazione la correlazione spaziale dei campitwe ipotesi di base sono quelle di
resistenze del calcestruzzo distribuite secondoampo stocastico gaussiano con una legge
di correlazione nota. | risultati ottenuti sono uganeralizzazione dei tradizionali intervalli
di tolleranza per campioni non correlati. Due esérapplicativi sono inoltre forniti per
illustrare la potenziale perdita di confidenza mebtime qualora la correlazione spaziale
delle resistenze sia trascurata.
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1 INTRODUCTION

In many countries there is an increasing need e&sasng the structural capacity of
existing buildings, either to allow them to hostwniinctions or to simply check their safety
against load cases that were originally neglectethd the design stage (typically the seismic
action). The evaluation of reinforced concrete ddtrtes must always begin with an
assessment of the geometry and of the materialeprep. Often the original design
documents are not available anymore, so that tisen® information on the materials that
were used. To overcome this difficulty destructiests must be carried out on the structures,
typically consisting in the extraction and testintaterial samples. For what it concerns
concrete, the samples consist in cores drilled filmenstructural elements in various locations
and then tested in compression testing machines. fiindamental assumption is that the
measured compressive strength of the extracted oreepresentative of the uniaxial
compressive strength of the material within theitire itself. Afterwards, the measured
values have to be statistically interpreted so bdaim a single estimation of in-situ
compressive strength that is suitable for the strat assessment according to the relevant
building codes. Several national and internatiost@ndards are today available for the
interpretation of measured concrete strength valaesl for such a task they propose
empirical, theoretical or mixed approaches. Altleém, however, somewhat assume that the
measured samples are independently drawn fromgéesitistribution, whereas in reality it is
much more reasonable to think of concrete streimgghstructure as a realization of a random
field with a given correlation structure. This ingd that the samples are somewhat correlated
and thus their relative spatial location may red(itéhe samples are quite close) the total
amount of information (and consequently increasiveguncertainties) they provide. The most
basic statistical theory on which are based sewartdria for the assessment of concrete
strength is that of tolerance intervals. In théolwing sections an extension of this approach
will be derived for the case of correlated samplgh a known correlation function. This
theory is intended to be a first step to develgessment tools and criteria that are aware of
the importance of selecting proper spatial locatifmn the concrete cores to be extracted so to
reduce the risk of overestimating the materialngjtie.

2 TOLERANCELIMITS

2.1 Basic definitions

Several international codes (see e.g. ACI 214.4REN) 13791:200% estimate the in-situ
concrete strength by means of an estimator ofyiine t
f . =X,—ks (1)

p.

wherexn is the sample measis the sample standard deviatiéns a proper coefficient. The
valuef,, is the estimation of the™ percentile of concrete strengthwith a desired (low)
probability of overestimation (i}, i.e. is such that:

P(X,,—ks< f))=1-a (2

A comprehensive description of the statistical tiieaf tolerance intervals has been provided
by Guttman. The core of the problem is the determinatiok a6 a function of the number of
samplesn, of the percentilgp and of the desired confidenee For the case of normally
distributed and independent samples the well-knselation is given by:
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k(n, p,@) =t} (zpVn) /0 (3)

wherez, =&}(x) is the inverse cumulative distribution functionao§tandard normal random
variable evaluated irandnis the number of samples. If the samples are aiaelit is
expected that additionally depends on the correlation matrixhef samples.

2.2 Notation

Some elementary notation must be introduced befwoeeeding into the theoretical
derivation of the theory. The set of measured strengths can be expressed by a column
vectorX as

X = (Xg,eeeX,,) (4)

By means of row vectd of equal weights, the meap, and standard deviatiaof the
sample strengths are expressed by:

X, =Ny x =WX (5)

s= 2 (% =x,)?/(N-1) = /X7 (I, =W)X (n-1) ©)

wherel, is thenxn identity matrix andL is a column vector of all ones. The correlatiortrma
of then samples at locationsis given by:

ph-n) -~ P(-r,)
C= : - : (7)
p(rn _rl) p(rn _rn)

Furthermore, the average of the out of diagonahelds ofC is expressed as:

P =[N(n _1)]_1%- P -1, (8)

2.3 Derivation of atolerancelimit for correlated samples

The objective of this section is to derive a gehergression for the coefficierk of
equation (1) that takes into consideration theeatation matrix so thaf,, satisfies equation
(2) even if the samples are no more uncorrelatée. flindamental assumptions are that in-
situ concrete strength distribution can be reasgnaimdeled as a homogeneous isotropic
Gaussian random field and that the correlation tdwhe process is available. This latter
hypothesis is rather strong because up to now NMéeyis known about the spatial structure
of the concrete strength distribution. Many authiorditeraturé® have modeled concrete
strength using Gaussian or exponential correldaars, but these assumptions are not based
on solid experimental investigations. Additionaliyg, the very few experimental campaigns
that can be found in literature discordant resattesfound. Rackwifzshowed that the spatial
correlation disappears at a distance of 10m, whenézerérecorded a quite lower distance.
Nevertheless, the aim of the work is to provideaaidtheoretical framework to be used as a
starting point to address the problem of the spatigelation of the strength measurements to
improve the confidence in the estimates; furthepeexnental studies are necessary to
investigate the specific properties of concretersgth distribution.
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The derivation begins from the definition given éguation (2). If from both terms the
unknown meam of the field is subtracted and then they are @ity the unknown standard
deviation of the field it results:

9
P( —H k—S< z j 1-a ®)

o o

If a normal random variableis defined as
z=(x, ~u)lo=WX-pu)lo (10)

then eq. (9) can be rewritten as:
11
P(—Z+Zl"pskj:l—a 1)
slo

Now it is recalled that a vector of correlated nafmandom variables can always be
expressed, by means of a proper decomposition @f ctirrelation matrix, as a linear
combination of a vectoY of independent standard normal random variabtet)a:

= oCY2Y +1u (12)

In the preceding equation the C matrix has beenrdposed using the principal square root
matrix. Combining eq. (12) with eq. (6) the followgiis obtained:

_ \/YTCM(IH -w)c*y _ [y"BY
S=0 =0, ——
n-1 n-1 (13)

It can be easily noticed that the matB=CY%(1,-1W)C*? has real eigenvalues and
eigenvectors, and its spectral decomposition wilstbe denoted by:

B=KTAK (14)

Replacing eq. (12) and eq. (14) into, respectivegations (10) and (13), inserting these
latter into eq. (11) and finally performing somesiga mathematical manipulations the
following expression is obtained:

(\NC1/2Y+21 )/n c
JKY)TAKY ‘\/ (n- 1)c (15)

wherec* simply denotes the sum of the correlation matrikies. It is important to notice
that eq. (15) describes a pivotal quantity, i.quantity that does not depend anymore on the
unknown parameters of the field, namely its meahstandard deviation. The only value that
remains unknown ik, that is the quantity that needs to be determiAe@ndom variablel is

then defined as follows:
fweray + z_,Nn?/c

JKY)TAKY (16)

Its CDF is in general rather complex, but it canyweasily be determined using Monte-Carlo
simulations. If its inverse distribution evaluaiedx is denoted by Hx), then the value df
to be used is given by:

u-=
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k=k(n,pa,C) = J(” _1)[(”;1)"’"1 s

(17)

where the ternt* has been replaced by the out-of-diagonal averdgbeoterms of the
correlation matrixon,.

According to this theory, the evaluation of a low@erance limit for correlated samples is
carried out first estabilishing the percentile oferestp and thetarget confidence in the
estimaten, then determining numerically the CDF wkevaluated in1-«) using eq. (16) and
replacing it into eq. (17) to obtaka The estimate is finally given by eq. (1).

2.4 Theoretical consider ations

The introduction of the parametgy is very convenient, because it is a single valeech
that ranges between 0 and 1 and it gives an ovel@N on the average level of spatial
correlation of the samples.

However this indicator, while very useful, does patvide a complete view on the overall
amount of uncertainty involved in the sampling sobke In order to explain this fact the
following example is presented. Let's assume thest iequired to estimate the 5% percentile
of concrete strength testing a 7.5m by 7.5m RC sising three samples with a target
confidence of 90%. Infinite different spatial laysdor the samples could be chosen: in this
case layout (a) and (b) of Figure 1 are being coatpdf it is assumed that the correlation
law follows a Gaussian correlation of the typ&)=exp(-¥/4), then both layout (a) and (b)
have practically the same level of average spatiaklationp,=0.31.

‘ 7.5m ‘
T i

o -

7.5m

(a) (b)

Figure 1: Two different sampling layouts having s@ne level of average spatial correlajigr=0.31.

The required estimate is performed in both casesywesuation (1), but the value of the
coefficientk to be used in the estimations must be evaluateordiag to the aforementioned
procedure, which yields significantly different uak for the two cases. In the case of layout
(a) it is obtained k=6.59, whereas in case (b) 39nust be used. The higher valuekas
due to the fact that layout (b) yields less infotimaon the properties of the underlying field
(the two very close samples practically provide shme data), and as a result a higher value
of k has to be used to reach the same target confidence

This example is useful to highlight the fact tha spatial layout has a deep influence on
the outcome of the evaluation, and simply seleatarglom locations for the samples (as it is
suggested in several current codes) may producepsuofal situations similar to that of
layout (b). In particular, according to the themalt framework here presented, the main idea

Meccanica dei Materiali e delle Strutture | VI (2016), 1, PP. 227-234 231



Massimo F. Bonfigli, Marco Breccolotti e Annibale Materazzi.

that should be always kept into consideration wtiemosing a sampling scheme is to select
locations that are as spread out as possible (kbwer the value op) and also so that the
minimum distance between any two samples is as dsghossible (so to increase the amount
of unique information on the field provided by te@mple). It is thus desirable that current
codes in future will provide more directions orsthopic.

3 CASE STUDIES

In this section two examples are presented totilites the potential loss of confidence in
the estimates if the spatial correlation of samdeseglected.

3.1 Examplel

In this first case a 12m x 16m reinforced concsdéd is considered. The objective is to
obtain an estimation for the 5% percentile of ceterstrength with a probability of
overestimation of 10% (i.e. a confidence of 90%)e umber of concrete cores that will be
used is 12 and it is assumed that they are disposedrid layout as in Figure 2.

| 1%

5 2 1

L 4 o & o A
Lf—'lm 4m

Figure 2: Sampling layout of example 1. Twelve saaee to be extracted from a 12m x 16m slab. Thpks
are placed in a 4x3 grid with 4m spacing betweavsrand columns.

The estimate is carried out first by neglecting spatial correlation and thus evaluating
using the eq. (3), for which it is obtainée2.44. Afterwards, the target confidence that
should have been chosen so to obtain the same eftumnsidering the spatial correlation of
the samples is numerically evaluated. This analigsisseful since it allows to estimate the
loss of confidence that results from having neglédhe dependence of the measured sample
values. In the investigations it is assumed thatdbrrelation follows a Gaussian law of the
type p(x):exp(-f/dz) or an exponential correlation Iga(x)=exp(-|x|/b)and several different
values for the parametedsandb are evaluated so to cover situations with a mosleatial
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correlation and situations where the dependencedeet the cores is rather strong. The
results of the analyses are summarized in tabéexl 2.

Gaussian correlation Exponential correlation
p(x)=exp(-x/d’) p(x)=exp(-|x|/b)

d (m) Actual confidence b (m) Actual confidencq
(1-0) (1-0)
2m 0.90 1.5m 0.85
3.5m 0.83 2.5m 0.64
5m 0.71 4 m 0.40
10 m 0.42 7m 0.22

Table 1: Example 1 — Achieved confidence if thetigda@orrelation of samples is neglected. The
boldface numbers highlight situations in which #tdual confidence is significantly lower than theget
one (90%).

Observing the values it is clear how the correfatdd the samples can potentially reduce
the achieved confidence depending on the actuatlation structure. A value @=3.5mfor
a Gaussian correlation law yields a confidence ighalightly lower of the target one, whereas
a value ofd equal or greater thaltm (which results in a correlation that is consistetth
some observations by RackwWitzjields a confidence of 71%, that is 29% lowernttike

desired one. With the exponential law results arenemore dramatic since the decay in
correlation is slower.

3.2 Example 2

Differently from the classical theory of toleranicgervals for independent samples, now
the spatial configuration of these has a deep impacthe results. Because of this, in the
second example a slightly different spatial configion of the twelve cores is being
investigated. The new configuration is shown inuFey3.

/|"' 24 m /|

wg

4 m«l

Figure 3: Sampling layout of example 2. Twelve saaee to be extracted from a 24m x 8m slab. Theksnm
are placed in a 6x2 grid with 4m spacing betweavsrand columns.

,Lﬂr m 4 m 4m 4 m

The same kind of analysis described in exampleslbegn carried out, and its results are
summarized in Table 2. These figures are very amtib those of the previous example.
Again, if the spatial correlation is neglected dhe classical theory of tolerance intervals is

being used a sensible loss of confidence may redodd&pending on the actual correlation
structure of concrete.
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Gaussian correlation Exponential correlation
p(x)=exp(-X/d’) p(x)=exp(-|x|/b)

d (m) Actual confidencq b (m) Actual confidencq
(1-0) (1-0)
2m 0.90 1.5m 0.86
3.5m 0.84 2.5 m 0.66
5m 0.73 4 m 0.43
10m 0.46 7m 0.24

Table 2: Example 2 — Achieved confidence if thetigpa@orrelation of samples is neglected. The
boldface numbers highlight situations in which #wtual confidence is significantly lower than thaeget
one (90%).

4 CONCLUSIONS

In this work the influence of the spatial corredatiof concrete strength on the estimation
of the in-situ concrete strength using cores elgchérom a structure has been investigated.
The classical formulas for tolerance limits of natiy distributed independend samples has
been extended to the case of correlated samplesbakic framework has been proposed as a
starting point to further investigate the problemdao develop feasible workarounds for
practical applications.

Furthermore, it has been shown that neglectingsibetial correlation of values may
potentially lead to a level of confidence in theiraates that is significantly lower than the
target one. Additional extensive experimental itigasions are however required to propertly
describe the spatial probabilistic structure aérstyth of concrete cores.
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