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Abstract.The recently developed approximate Wiener pathgrate(WPI) technique for de-
termining the stochastic response of nonlinearémggic multi-degree-of-freedom (MDOF)
systems has demonstrated a relatively high degre@eauracy. Nevertheless, in the standard
implementation of the WPI technique, only the “mumstbable path” (from the space of all
possible paths) contributes to the evaluation efftimctional integral for determining the sys-
tem response transition probability density funct{®DF). Clearly, this implies a significant
degree of approximation that needs to be quantifdso, it is shown herein that for a certain
class of systems described by stochastic diffedeatjuations (SDESs), the WPI approximate
solution coincides, notably, with the exact solutidotivated by the above observations, some
preliminary resultsare presented herein pertainiogthe accuracy of the WPI approximate
technique for a particular class of SDEswith constdiffusion, but nonlinear drift coefficients.
Specifically, a bound is derived for the WPI basegponse transition PDF which can be used
as an a priori estimate of the anticipated accuratythe WPI technique. Further, due to its
analytical nature, the bound can be directly ugggthaps, as an approximation of the solution
process PDF without resorting to further numerit@atment of the problem.

1 INTRODUCTION

In the field of stochastic dynamics, Monte Carlmsiation methods have been among the most
versatile ones for solving stochastic differentiauations (SDEs) of general form
[1].Nevertheless, in many cases they can be compoédly prohibitive; and thus, there is a
need for developing alternative approximate anadytnumerical solution techniques such as
the ones based on path integrals.The path integradept was initially introduced by Wiener
[2] as a tool for solving problems involving Brovani motion, and was reinvented by Feynman
[3] providing a reformulation of quantum mechaniltsgeneral, the SDE solution joint transi-
tion probability density function (PDF) can be eagsed as a Wiener path integral (WPI), or in
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other words, asa functional integral over the spzfcall possible paths. Note, however, that
analytical evaluation of the WPI is a highly diffit task in the general case. To circumvent
this challenge, research efforts in the literatuage focused on applying an extremum condi-
tion [4] and accounting, essentially, for the cdmition of only one path in the WPI, the so-
called most probable path. Of course, it is possiblinclude additional terms in the related
expansion and account for fluctuations around tlstrprobablepath[5], at the expense, how-
ever, of computational efficiency.

Further, despite the seemingly significant apprations involved in the above procedure,
the accuracy degree demonstrated in several emgigemechanics/dynamics applications is
surprisingly high [6-7]. In some cases, as demated herein, the WPI approximate solution
coincides, notably, with the exact solution. Motec by the above observations, some prelimi-
nary results are presented herein pertaining t@atlearacy of the WPI approximate technique.
Specifically, for a particular class of SDEs a bdus derived that can be used as an a priori
estimate of the expected accuracy obtained by aygpthe WPI approximate methodology.
Further, due to its analytical nature, in many sagiecan be directly used as an approximation
of the solution process PDF without resorting thfer numerical treatment of the problem.

2 WIENER PATH INTEGRAL IN ENGINEERING MECHANICS

2.1 Overview

In general, the transition PDE(af, tela;, ti) of an arbitrary stochastic procesét) from a
point in state space; at timet; to a pointa, at timet; wheret; > t;, can be expressed as a

functional integral over the space of all possitzlmsC{ai, ti; as, tf} in the form

{af ,tf}

plaptrlant) = [ wia(@)lda(o]. &

{apt}
The WPI of Eq.(1) possesses a probability distrdyuon the path space as its integrand, which
is denoted by [a(t)] and is called probability density functional. Nttet for relatively sim-
ple cases, an explicit form & [a(t)] can be determined. For instance, the probabiétysdy
functional for the white noise process(t), i.e.E(v(t)) =0 and E(v(t)v(t)) =

t 1 2
Wv(t)] = Pexp [ J- ’ 5 ;7(:;0 tl (2)

whereb is a normalization coefficient. However, evenhétprobability density functional is
constructed, the analytical solution of the WPIE®f. (1) is, in general, intractable. Thus, to
circumvent the aforementioned challenge, sevessdareh efforts have focused on developing
approximate techniques for determining the tramsitPDF. Specifically, in the engineering
dynamics field an approximate WPI technique has lokseloped recently for determining the
response transition PDF of multi-degree-of freed@DOF) structural systems subject to
Gaussian white noise excitations. The techniqueacaount for a wide range of nonlinearity
kinds as well as for systems endowed with fraclialeivative terms (e.g. [6-7]). In this re-
gard, denoting the response displacement and weleectors asv and w,respectively, the
response transition PO wy, wy, t¢|w;, w;, t; )is given by
{wrwptr) ty
p (W Vg, £ Wi Wi £) = Dexp (— f L(W,W,W)dt> [dw(D)].(3)
t

{wiwit;} i

Meccanica dei Materiali e delle Strutture | VI (2016), 1, PP. 195-202 196



Meimaris A., Kougioumtzoglou I. A., Pantelous A. A.

The right-hand side of Eq.(3) represents a funeliontegral over the space of all possible
paths C{wi, Wi, ti; W, W, tf}, and L(w,w,w) is the Lagrangian function corresponding to
structural system under consideration; see [6-7{afefences therein for more details. As men-
tioned earlier, it can be readily seen that thdydical solution of the WPI of Eq.(3) is at least a
rather daunting, if not impossible, procedure; thars approximate solution is needed. To this
aim, it is noted that the largest contributiontie WPI comes from the trajectory for which the
integral in the exponential of Eq.(3) becomes aallsas possible. Variational calculus rules [4]
dictate that this trajectory with fixed end poisttisfies the extremality condition

t
) f L((We, W, W,))dt =0, (4)
ti
wheraw.(t) denotes thémost probable path”to be determined by the functional optimization
problem

tr

Min(Max)  Jwe®] = | Lawa o, 5)

ti
together with the boundary conditioms.(t;) = w;, w.(t;) = Ww;, we(ty) = wy, wi(ty) =
wg. Depending on the complexity of the problam,(t) can be determined either by deriving
and solving the Euler-Lagrange (E-L) equations @ssed with Eq.(4) (e.g. [7]), or, alterna-
tively, by treating directly the deterministic balary value problem (BVP) of Eq.(5) (e.g. [6]).
Oncew,(t) is determined, the transition PDF can be approtathhy

tr
p(Wf, Wf' tflwi' Wi, ti) ~ ®exp <_ f L(Wc: we, Wc)dt>- (6)
ti

Comparing Egs.(3) and (6), it is seen that onlyl#ngest contribution to the WPI of Eq.(3) is
considered in the approximation of Eq.(6); this esnfrom the most probable paih.(t)for
which the integral in Eq.(5) becomes as small a&sipde. It is noted that the approximation of
Eq.(6) has demonstrated satisfactory accuracy veoempared to pertinent brute-force MCS
data for the considered engineering dynamical sys{e.g. [6-7]). Also, notably, in the follow-
ing example the WPI approximate solution coinciéh the exact solution.

2.2 Motivation: The stochastic beam bending problem An exact solution case

Consider a statically determinate Euler-Bernowam satisfying the differential equation

d? d?*w

Iz (E(x)l W) = l(x), (7)
wherex denotes the spatial variablgé(x) represents the Young’s modulus modeled as a sto-
chastic field;! is the constant cross-sectional moment of inenti@;) represents the deflection
of the beam; ané(x) denotes a deterministic distributed force. Furthete that Eq. (7) can be

integrated twice to produce the internal force (heg moment) which is deterministic and
twice more to produce the deflection which is sastlt. In particular, for a given lengthof

the beam EQq.(7) can be integrated under the bo;armimditions—E(x)I‘:T": =M, atx =0

2
and —E(x)I 22 = M, atx = L to obtain
dx? 5

_E@)I ‘;xf - M(x), (8)

whereM (x) is the bending moment of the beam. In the follagyithe inverse of the Young's
modulus is assumed to vary randomly along the @ixise beam as

Meccanica dei Materiali e delle Strutture | VI (2016), 1, PP. 195-202 197



Meimaris A., Kougioumtzoglou I. A., Pantelous A. A.

1 1

Eo) - E(l + v(x)), €))
wherét,, is the mean value of the Young’s modulus aiie) represents a homogeneous sto-
chastic field modeled as a white noise process it propertiesE(v(x)) =0, and
E(v(x)v(xy)) = 2mSy8(x1 — x5), whereS, is the constant white noise power spectrum val-

ue. Further, applying the WPI approximate techni§4@] to the stochastic Eq.(8) the BVP of

Eq.(5) becomes
. s dw,(x) d*w,(x)

Min(Max) JIwe ()] = fxi L <x, we(x), prantirral Lo (10)
with the boundary conditions, (x;) = w,,,w,(x;) = We W (%) = 9, we(xr) = 9. Also,
the corresponding Euler-Lagrange equation becomes

oL aaz:+az aL_O 1
ow. O0xow, 0x2dw, 1
Next, for the specific case of a cantilever bearthwW (x) = M,, the Lagrangian function be-

comes
dZWC MO 2
.. 1 ( dx? + E_OI)
LW, W, W) = s————-. (12)
2 2ms, (&)
0 \Eo1
Substituting Eq.(12) into the Euler-Lagrange Eq) @rid solving yields
we (%) = ¢y + c1x + c3x% + c3x3. (13)

Applying the boundary conditions.(0) =0, w.(0) = 0, w,(x;) = wg, w.(x;) =9, the
coefficients are determined as

2 3 .

COZO, Cl=0, Cr = — = 3 (14)

Xf xXf

Substituting next Eqgs.(13-14) into Eq.(6)

xf dw.(x) d*w,(x
p(wf,ﬁf,xf|wi,19i,xi) ~ dexp (—f L(x, we(x), welx) d7we )> dx) (15)
X

dx ' dx?

and manipulating yields the bivariate Gaussianaese PDF

1
p(wy, 9, %¢10,0,0) = (Zﬂ)_llzl"l/zeXp[ 5 (X - wWEHX - ﬂ)],(16)
Whel’Q( = (Wfﬁf)T and

1

My |Z,.2
_fo

1, 1
M0>2 §xf3 Exfz
F="EI

1) |1 . (17)

2
2% X

,2=2n50<

X

f
Further, following integration, the marginal PDFéwy, x¢|0,0) andp(9;, x£]0,0) are given,
respectively, by

M,
1 1 (W + 25 x7)?

_ 0
> exp 5> RY (18)
2 M 2 3 (Mo
smsoxf (52) Ve S0 (5)

p(wy, x710,0) =

and
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1 10+ %}xf)z
y > exp _E—MOZ . (19)
2mSoxy (5_001) V2 2mSoxy (ﬁ)
Notably, for the specific stochastic beam bendirgngple considered herein, the WPI based
analytical closed-form expression of Eq.(16) foe fbint response PDF is also the exact one.
This can be readily verified by casting the govegriq.(8) into a standard SDE form [1, 9]

do M, M,

a— —E—OI—E—OIWIZT[SOT](X), (20)
whose solution is clearly given by Eq.(19) %) is a white noise process with unit intensity).
Thus, in this case the exact solution of the joaisponse PDF coincides with the WPI solution
that is based on approximating Eq.(3) with Eq.{8)is interesting and encouraging result re-
garding the accuracy of the WPI approximate teamimotivates further research regarding
the conditions under which the WPI approximatiooviiies with the exact solution, or more
generally, deriving error bounds and determininguaacy estimates for specific classes of
governing stochastic dynamics equations. In thieviehg section, some observations and pre-
liminary results towards this aim are presented.

p(9,x710,0) =

3 MATHEMATICAL ASPECTS

3.1 A class of SDEs with constant diffusion and ndinear drift coefficients
Consider the general class of SDEs of the form

dY; = u(Y,)dt + odB;, (21)
whereB,; is a standard Brownian motioa,is a constantyu(-)denotes a real-valued function
andY; is the response process to be determined. Nat¢hinatochastic beam bending Eq.(20)
Is a special case of the above class. Furthes,assumed in the ensuing analysis that standard
conditions guaranteeing the existence and the enigs of the solutioX, are satisfied [9].
Next, seeking a solution of the forth= f(t, B;) for Eq.(21), and considering It6’s Lemma[1,
9], i.e.,

of 10%f af
df (t,B;) = <E+Eﬁ> dt+adBt, (22)
yields the following system of equations to be edl¥orf (¢, B;), i.e.,
af 10%f of
E(trx) +§W(t!x) —‘u(f(t,x)), a(tlx) =0. (23)
Taking into account thatis constant, Eq.(23) becomes
af af
E (t, x) - l’l(f(tr x))r a (t, x) =0. (24)

Thus, the exact solution, i.e., a procgss f(t, B;), withX; = Y;a.s. (almost surely) is deter-
mined by solving equatiegé = u(f), in conjunction withf (¢, x) = ox + c(t), wherec(t) is a

time-dependent function to be evaluated. The l|aigaression is determined by solving the
equationg—i (t,x) = o in EQ.(24). Overall,a solution process of the fgrm oB; + c(t) is

provided, which is, clearly, distributed as a Gars$DF with mearm(t) and standard devia-
tion o.0Obviously, for the case where the drift coefficienconstant, i.ey(Y;) = u, such as in

Meccanica dei Materiali e delle Strutture | VI (2016), 1, PP. 195-202 199



Meimaris A., Kougioumtzoglou I. A., Pantelous A. A.

the case of the bending beam EQq.(20) examinedeirséition 2, the solution process takes the
formY; = oB; + ut.

Further, applying the WPI approximate solution roeiblogy to Eq.(21) yields aLagrangian
function of the form

R Al
L, Y) =§[T : (25)
whereas the functional minimization problem of Byjléads to the E-L equation [6-7]
oL 9 oL 0 26
dy. odtay, ' (26)

with the boundary conditiong,(t;) =ycl.,yc(tf) = Yej- Taking into account EQs.(25-26)
yields

; ou(yc)
ve = u(yc)a—c, (27)
Ve
which can be transformed into
. on(ye) .
zycyc = z.u(yc)a—cyw (28)
_ Ve
or equivalently,
0 2= 2 29
ayc - aﬂ(yc) ) ( )
Eq.(29) leads to
Vol = uye)? +d, (30)

whered is a constant. At this point, it is interestingrtote the similarity of the derived E-L
Eq.(30) to be solved for the most probable patand the form of Eq.(24), i.é;—’; = u(f) to be
solved for the proce¥s= f(t, B;). Considering next Eq.(25) and substituting Eq.{86)s

o 12y = d = 2ycu(y.)
L(Yc:)’c) = El . o2 - . , (31)
whereas the integral of Eq.(31) is given by
tr .
_ 1[2 ffif y.2dt —d(ty — t;) — 2M (ycf) +2M(y,,)
[ Lowyode =3 ~ . @2

5
whereM (-)denotes an antiderivative pf-).Next, utilizing the Cauchy—Schwarz inequality the
quantity2 ftt.f y.2dt can be bounded by

tf tf (y _y )2
ijczdtzjyczdtzu.
tr—t;

t;

(33)

ti
Combining Eq.(32) and (33) yields

tr 2
. 1 (YCf - yci)

[

l

t;
Thus, it can be readily seen that a bound forrduesition PDF can be given by

P (nyi tr|Ver ti) = Fexp (—G (yc,c, tr yci'ti)>' (35)

—d(ty - t) —2M (y;,) +2M(3) |- (39)

where

Meccanica dei Materiali e delle Strutture | VI (2016), 1, PP. 195-202 200



Meimaris A., Kougioumtzoglou I. A., Pantelous A.

(o (=) + (-2 G) +2m6) (=]

f yci; ti) = Z(tf _ ti)O'z

has been included in the const&nin Eq.(35). Clearly,
the normalization constarit is determined a§ = — !

e exp(—G(x,tf|yCi,ti))dx
seen that Eq.(35can be used as an a priori estimate of the eggextcuracy obtained byp-
plying the WPI approximate methodology. Furtherrany cases, it can be direi used as an
approximation of the solution process PDF obtaiiezlero computational cost, without ret-
ing to the numerial solution of the -L Eq.(26).

and the arbitrary termxp( alty— tl))

. It can be readily

3.2  Numerical example

Consider next th&DE of Eq.(21) wittu(y) = —y — ey3, wheree is a constaparameter ac-
counting for the degree of nonlinearity. That

dYt - (_Yt - SYtg)dt + O-dBt. (37)
In the following, the conditioY (t = 0) = 0 is considered anal = 1. Note thatfor the SDE ¢

Eq.(37) an antiderivativé(y) is given byM(y) = — y and thus, Eq.(36) becon

) 2
2 (—ZM + ZM(O)) ¢
6 (ve4]00) = [ (5;? ) :

_ nyz + (ny + Eny4)tf

7 (38)

0.7

T T
—WPI based PDF Bound - t=1s, eps=1

+ MCS - t=1s, eps=1
7WPI based PDF Bound - t=1s, eps=0.001
MCS - t=1s, eps=0.001
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Figure 1: Wiener path integral based PDF boundvarious values ce; comparison with
MCS data fot = 1s
In Fig.1, the WPI based PDF bound of EQ.(38) istptb and compared against MCS
(5000 realizations). It is argued that given theuaacy exhibited, the bound can be used t-

ly, perhaps, also as an approximation of thution process PDF.

4 CONCLUDING REMARKS

In this paperjt was shown that fc the stochastic beam bending problem the WPI aji-
mate solution coincides, notably, with the exadtitson. Motivated bythis resul, some prelim-

Meccanica dei Materiali e delle Strutture | VI (2016), 1, PP. 195-202 201



Meimaris A., Kougioumtzoglou I. A., Pantelous A. A.

inary work was presented herein pertaining to ttmuecy of the WPI approximate technique
for a particular class of SDEs. Specifically, a hddor the WPI based response transition PDF
has been derived based on the Cauchy-Schwarz iitggion SDEs with constant diffusion,
but nonlinear drift coefficients. This bound canused as an a priori estimate of the expected
accuracy obtained by applying the WPI approximag¢hmdology. Further, due to its analytical
nature, it can be directly used, perhaps, as arogppation of the solution process PDF with-
out resorting to further numerical treatment of pneblem.
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