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Abstract.The recently developed approximate Wiener path integral (WPI) technique for de-
termining the stochastic response of nonlinear/hysteretic multi-degree-of-freedom (MDOF) 
systems has demonstrated a relatively high degree of accuracy. Nevertheless, in the standard 
implementation of the WPI technique, only the “most probable path” (from the space of all 
possible paths) contributes to the evaluation of the functional integral for determining the sys-
tem response transition probability density function (PDF). Clearly, this implies a significant 
degree of approximation that needs to be quantified. Also, it is shown herein that for a certain 
class of systems described by stochastic differential equations (SDEs), the WPI approximate 
solution coincides, notably, with the exact solution. Motivated by the above observations, some 
preliminary resultsare presented herein pertaining to the accuracy of the WPI approximate 
technique for a particular class of SDEswith constant diffusion, but nonlinear drift coefficients. 
Specifically, a bound is derived for the WPI based response transition PDF which can be used 
as an a priori estimate of the anticipated accuracy of the WPI technique. Further, due to its 
analytical nature, the bound can be directly used, perhaps, as an approximation of the solution 
process PDF without resorting to further numerical treatment of the problem. 

1 INTRODUCTION 

In the field of stochastic dynamics, Monte Carlo simulation methods have been among the most 
versatile ones for solving stochastic differential equations (SDEs) of general form 
[1].Nevertheless, in many cases they can be computationally prohibitive; and thus, there is a 
need for developing alternative approximate analytical/numerical solution techniques such as 
the ones based on path integrals.The path integral concept was initially introduced by Wiener 
[2] as a tool for solving problems involving Brownian motion, and was reinvented by Feynman 
[3] providing a reformulation of quantum mechanics. In general, the SDE solution joint transi-
tion probability density function (PDF) can be expressed as a Wiener path integral (WPI), or in 
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other words, asa functional integral over the space of all possible paths. Note, however, that 
analytical evaluation of the WPI is a highly difficult task in the general case. To circumvent 
this challenge, research efforts in the literature have focused on applying an extremum condi-
tion [4] and accounting, essentially, for the contribution of only one path in the WPI, the so-
called most probable path. Of course, it is possible to include additional terms in the related 
expansion and account for fluctuations around the most probablepath[5], at the expense, how-
ever, of computational efficiency. 

Further, despite the seemingly significant approximations involved in the above procedure, 
the accuracy degree demonstrated in several engineering mechanics/dynamics applications is 
surprisingly high [6-7]. In some cases, as demonstrated herein, the WPI approximate solution 
coincides, notably, with the exact solution. Motivated by the above observations, some prelimi-
nary results are presented herein pertaining to the accuracy of the WPI approximate technique. 
Specifically, for a particular class of SDEs a bound is derived that can be used as an a priori 
estimate of the expected accuracy obtained by applying the WPI approximate methodology. 
Further, due to its analytical nature, in many cases, it can be directly used as an approximation 
of the solution process PDF without resorting to further numerical treatment of the problem.  

2 WIENER PATH INTEGRAL IN ENGINEERING MECHANICS 

2.1 Overview 

In general, the transition PDF ���� , ��|��, ��	 of an arbitrary stochastic process �
�� from a 
point in state space �� at time �� to a point �� at time �� where �� > ��, can be expressed as a 
functional integral over the space of all possible paths ���, ��; �� , ��� in the form  ���� , ��|��, ��	 = � ���
������
���{��	,��}

{��,��} .																																								
1� 
The WPI of Eq.(1) possesses a probability distribution on the path space as its integrand, which 
is denoted by ���
��� and is called probability density functional. Note that for relatively sim-
ple cases, an explicit form of ���
��� can be determined. For instance, the probability density 
functional for the white noise process  
��, i.e.,!� 
��	 = 0 and !� 
�#� 
�$�	 =2&'()
�# − �$�, is given by [8] �� 
��� = Φ,-� .−� 12 
��$2&'(��

�� ��/ ,																																											
2� 
whereΦ is a normalization coefficient. However, even if the probability density functional is 
constructed, the analytical solution of the WPI of Eq. (1) is, in general, intractable. Thus, to 
circumvent the aforementioned challenge, several research efforts have focused on developing 
approximate techniques for determining the transition PDF. Specifically, in the engineering 
dynamics field an approximate WPI technique has been developed recently for determining the 
response transition PDF of multi-degree-of freedom (MDOF) structural systems subject to 
Gaussian white noise excitations. The technique can account for a wide range of nonlinearity 
kinds as well as for systems endowed with fractional derivative terms (e.g. [6-7]). In this re-
gard, denoting the response displacement and velocity vectors as 0 and 01 ,respectively, the 
response transition PDF ��02, 01 2, ��|03, 01 3, ��	is given by 

��02, 01 2, ��|03, 01 3, ��	 = � Φ,-� 4−� ℒ
0,01 , 06 �����
�� 7 ��0
����02,01 2,���

{03,01 3,��} . 
3� 
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The right-hand side of Eq.(3) represents a functional integral over the space of all possible 
paths �03, 01 3, ��; 02, 01 2, ���, and ℒ
0,01 , 06 � is the Lagrangian function corresponding to 
structural system under consideration; see [6-7]and references therein for more details. As men-
tioned earlier, it can be readily seen that the analytical solution of the WPI of Eq.(3) is at least a 
rather daunting, if not impossible, procedure; thus, an approximate solution is needed. To this 
aim, it is noted that the largest contribution to the WPI comes from the trajectory for which the 
integral in the exponential of Eq.(3) becomes as small as possible. Variational calculus rules [4] 
dictate that this trajectory with fixed end points satisfies the extremality condition ) � ℒ�
09, 091 , 096 �	����

�� = 0		,																																												
4� 
where09
�� denotes the “most probable path” to be determined by the functional optimization 
problem ;<=
;�-�										>�09
��� = � ℒ
09, 091 , 096 �����

�� ,																																	
5� 
together with the boundary conditions 09
��� = 03, 091 
��� = 01 3, 09���	 = 02,  021 ���	 =01 2. Depending on the complexity of the problem, 09
�� can be determined either by deriving 
and solving the Euler-Lagrange (E-L) equations associated with Eq.(4) (e.g. [7]), or, alterna-
tively, by treating directly the deterministic boundary value problem (BVP) of Eq.(5) (e.g. [6]). 
Once 09
�� is determined, the transition PDF can be approximated by  ��02, 01 2, ��|03, 01 3, ��	 ≈ Φexp 4−� ℒ
09, 091 , 096 �����

�� 7.																					
6� 
Comparing Eqs.(3) and (6), it is seen that only the largest contribution to the WPI of Eq.(3) is 
considered in the approximation of Eq.(6); this comes from the most probable path 09
��for 
which the integral in Eq.(5) becomes as small as possible. It is noted that the approximation of 
Eq.(6) has demonstrated satisfactory accuracy when compared to pertinent brute-force MCS 
data for the considered engineering dynamical systems (e.g. [6-7]). Also, notably, in the follow-
ing example the WPI approximate solution coincides with the exact solution.  
 
2.2 Motivation: The stochastic beam bending problem – An exact solution case  
 
Consider a statically determinate Euler-Bernoulli beam satisfying the differential equation �$�-$ 4!
-�E �$F�-$7 = G
-�,																																																	
7� 
where	- denotes the spatial variable, !
-� represents the Young’s modulus modeled as a sto-
chastic field; E is the constant cross-sectional moment of inertia; F
-� represents the deflection 
of the beam; and G
-� denotes a deterministic distributed force. Further, note that Eq. (7) can be 
integrated twice to produce the internal force (bending moment) which is deterministic and 
twice more to produce the deflection which is stochastic. In particular, for a given length I of 

the beam Eq.(7) can be integrated under the boundary conditions −!
-�E JKLJMK = ;( at	- = 0 

and  −!
-�E JKLJMK = ;N at - = I to obtain 

−!
-�E �$F�-$ = ;
-�,																																																							
8� 
where;
-� is the bending moment of the beam. In the following, the inverse of the Young’s 
modulus is assumed to vary randomly along the axis of the beam as 
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1!
-� = 1!P 
1 +  
-��,																																																						
9� 
where!( is the mean value of the Young’s modulus and  
-� represents a homogeneous sto-
chastic field modeled as a white noise process with the properties !� 
-�	 = 0, and !� 
-#� 
-$�	 = 2&'()
-# − -$�, where '( is the constant white noise power spectrum val-
ue. Further, applying the WPI approximate technique [6-7] to the stochastic Eq.(8) the BVP of 
Eq.(5) becomes  ;<=
;�-�																	>�FS
-�� = � ℒ 4-,FS
-�, �FS
-��- , �$FS
-��-$ 7M�

M� �-		,												
10� 
with the boundary conditions FS
-�� = FS�	, FS�-�	 = FS� , FS1 
-�� = T�, FS1 �-�	 = T�. Also, 

the corresponding Euler-Lagrange equation becomes UℒUFS − UU- UℒUFS1 + U$U-$ UℒUFS6 = 0		.																																										
11� 
Next, for the specific case of a cantilever beam with ;
-� = ;( the Lagrangian function be-
comes 

ℒ
FS, FS1 , FS6 � = 12 V
JKLWJMK + PXYXZ[$2&'( VPXYXZ[$ .																																					
12� 

Substituting Eq.(12) into the Euler-Lagrange Eq.(11) and solving yields  FS
-� = \( + \#- + \$-$ + \]-].																																							
13� 
Applying the boundary conditions FS
0� = 0, FS1 
0� = 0, 	FS�-�	 = F� , 	FS1 �-�	 = T� the 
coefficients are determined as \( = 0,			\# = 0,			\$ = −-�T� − 3F�-�$ ,			\] = −−-�T� + 2F�-�] .														
14� 
Substituting next Eqs.(13-14) into Eq.(6) ��F� , T� , -�|F�, T� , -�	 ≈ Φexp4−� ℒ 4-, FS
-�, �FS
-��- , �$FS
-��-$ 7M�

M� �-7									
15� 
and manipulating yields the bivariate Gaussian response PDF 

��F� , T� , -�|0,0,0	 = 
2&�^#|_|^#/$exp a	 −12 
b − c�d_^#
b − c�e , 
16� 
whereb = 
F�T��d and  

c = − ;(!(E f12 -�$-� g , h = 2&'( i;(!(Ej$ k
13 -�] 12 -�$12 -�$ -� l.																						
17� 

Further, following integration, the marginal PDFs ��F� , -�|0,0	 and ��T� , -�|0,0	 are given, 
respectively, by  

��F� , -�|0,0	 = 1m$]&'(-�] VPXYXZ[$ √2& ,-�o−
12 
F� + PX$YXZ -�$�$$]&'(-�] VPXYXZ[$ p														
18� 

and 
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��T� , -�|0,0	 = 1m2&'(-� VPXYXZ[$ √2& ,-�o−
12 
T� +

PXYXZ -��$2&'(-� VPXYXZ[$p.														
19� 
Notably, for the specific stochastic beam bending example considered herein, the WPI based 
analytical closed-form expression of Eq.(16) for the joint response PDF is also the exact one. 
This can be readily verified by casting the governing Eq.(8) into a standard SDE form [1, 9] �T�- = − ;(!(E − ;(!(E q2&'(r
-�,																																								
20� 
whose solution is clearly given by Eq.(19) (r
-� is a white noise process with unit intensity). 
Thus, in this case the exact solution of the joint response PDF coincides with the WPI solution 
that is based on approximating Eq.(3) with Eq.(6). This interesting and encouraging result re-
garding the accuracy of the WPI approximate technique motivates further research regarding 
the conditions under which the WPI approximation provides with the exact solution, or more 
generally, deriving error bounds and determining accuracy estimates for specific classes of 
governing stochastic dynamics equations. In the following section, some observations and pre-
liminary results towards this aim are presented. 

3 MATHEMATICAL ASPECTS 

3.1 A class of SDEs with constant diffusion and nonlinear drift coefficients 
Consider the general class of SDEs of the form �s� = t
s���� + u�v�,																																																			
21� 
where	v�  is a standard Brownian motion, u is a constant, t
∙�denotes a real-valued function 
and s� is the response process to be determined. Note that the stochastic beam bending Eq.(20) 
is a special case of the above class. Further, it is assumed in the ensuing analysis that standard 
conditions guaranteeing the existence and the uniqueness of the solution x� are satisfied [9]. 
Next, seeking a solution of the form s� = y
�, v�� for Eq.(21), and considering Itô’s Lemma[1, 
9], i.e., 

																																										�y
�, v�� = 4UyU� + 12U$yU-$7�� + UyU- �v�	,																																												
22� 
yields the following system of equations to be solved for y
�, v��, i.e.,	UyU� 
�, -� + 12U$yU-$ 
�, -� = t�y
�, -�	,							UyU- 
�, -� = u	.																						
23� 
Taking into account thatu is constant, Eq.(23) becomes UyU� 
�, -� = t�y
�, -�	,								UyU- 
�, -� = u	.																																												
24� 
Thus, the exact solution, i.e., a processx� = y
�, v��, withx� = s�a.s. (almost surely) is deter-

mined by solving equation
z�z� = t
y�, in conjunction with	y
�, -� = u- + \
��, where \
�� is a 

time-dependent function to be evaluated. The latter expression is determined by solving the 

equation 
z�zM 
�, -� = u in Eq.(24). Overall,a solution process of the forms� = uv� + \
�� is 

provided, which is, clearly, distributed as a Gaussian PDF with mean \
�� and standard devia-
tion u.Obviously, for the case where the drift coefficient is constant, i.e., t
s�� = t, such as in 
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the case of the bending beam Eq.(20) examined in the section 2, the solution process takes the 
forms� = uv� + t�.  

Further, applying the WPI approximate solution methodology to Eq.(21) yields aLagrangian 
function of the form I
{, {1 � = 12 .{1 − t
{�u /$ ,																																																
25� 
whereas the functional minimization problem of Eq.(5) leads to the E-L equation [6-7] UℒU{S − UU� UℒU{S1 = 0	,																																																			
26� 
with the boundary conditions {S
��� = {S�	, {S���	 = {S�. Taking into account Eqs.(25-26) 

yields {S 6 = t
{S� Ut
{S�U{S ,																																															
27� 
which can be transformed into 2{S1 {S 6 = 2t
{S� Ut
{S�U{S {S1 ,																																												
28� 
or equivalently, UU� {S1 $ = UU� t
{S�$,																																															
29� 
Eq.(29) leads to {S1 $ = t
{S�$ + �	,																																																		
30� 

 
where� is a constant. At this point, it is interesting to note the similarity of the derived E-L 

Eq.(30) to be solved for the most probable path{S, and the form of Eq.(24), i.e., 
z�z� = t
y� to be 

solved for the processs� = y
�, v��. Considering next Eq.(25) and substituting Eq.(30) yields   I
{S , {S1 � = 12 .2{S1 $ − � − 2{S1 t
{S�u$ /,																													
31� 
whereas the integral of Eq.(31) is given by  

� I
{S , {S1 �����
��

= 12 |2} {S1 $������ − ���� − ��	 − 2; V{S�[ + 2;�{S�	u$ ~,								
32� 
where;
∙�denotes an antiderivative of t
∙�.Next, utilizing the Cauchy–Schwarz inequality the 

quantity 2} {S1 $������  can be bounded by 

2 � {S1 $����
��

≥ � {S1 $����
��

≥ V{S� − {S�[$�� − �� 	.																																		
33� 
Combining Eq.(32) and (33) yields 

� I
{S , {S1 �����
��

≥	 12u$ |V{S� − {S�[$�� − �� − ���� − ��	 − 2; V{S�[ + 2;�{S�	~.					
34� 
Thus, it can be readily seen that a bound for the transition PDF can be given by  � V{S� , ���{S�, ��[ = � exp i−� V{S� , ���{S� , ��[j,																													
35� 
where 
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and the arbitrary term exp V^J
the normalization constant �
seen that Eq.(35) can be used as an a priori estimate of the expected accuracy obtained by a
plying the WPI approximate methodology. Further, in many cases, it can be directly
approximation of the solution process PDF obtained at zero computational cost, without resor
ing to the numerical solution of the E
 
3.2 Numerical example 
 
Consider next the SDE of Eq.(21) with 
counting for the degree of nonlinearity. That is, 

In the following, the condition 

Eq.(37) an antiderivative;
{�
� V{S� , ���0,0[ � k{S�$ Q i

 

Figure 1: Wiener path integral based PDF bound for various values of 

In Fig.1, the WPI based PDF bound of Eq.(38) is plotted and compared against MCS data
(5000 realizations). It is argued that given the accuracy exhibited, the bound can be used direc
ly, perhaps, also as an approximation of the sol
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In this paper, it was shown that for
mate solution coincides, notably, with the exact solution. Motivated by 
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V J���^��	$�K [has been included in the constant �

 is determined as � � #} ���V^��M,����W�,��	[��� JM
) can be used as an a priori estimate of the expected accuracy obtained by a

plying the WPI approximate methodology. Further, in many cases, it can be directly
approximation of the solution process PDF obtained at zero computational cost, without resor

al solution of the E-L Eq.(26).  

SDE of Eq.(21) with t
{� � *{ * �{], where � is a constant
counting for the degree of nonlinearity. That is,  �s� � 
*s� * �s�]��� Q u�v�.												
In the following, the condition s
� � 0� � 0 is considered, and u � 1. Note thatfor the SDE of 
 � is given by ;
{� � * �K$ * �� {�, and thus,  Eq.(36) becomesi*2; V{S�[ Q 2;
0�j ��2�� l � f{S�$ Q 
{S�$ Q2��

Figure 1: Wiener path integral based PDF bound for various values of �; comparisons
MCS data for� � 1� 

In Fig.1, the WPI based PDF bound of Eq.(38) is plotted and compared against MCS data
(5000 realizations). It is argued that given the accuracy exhibited, the bound can be used direc
ly, perhaps, also as an approximation of the solution process PDF.  
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it was shown that for the stochastic beam bending problem the WPI approx
mate solution coincides, notably, with the exact solution. Motivated by this result
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� 	j ��� * ��	l,						
36� 
� in Eq.(35). Clearly, 

	[JM. It can be readily 
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plying the WPI approximate methodology. Further, in many cases, it can be directly used as an 
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37� 
. Note thatfor the SDE of 

, and thus,  Eq.(36) becomes Q �$ {S������ g.							
38� 
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In Fig.1, the WPI based PDF bound of Eq.(38) is plotted and compared against MCS data 
(5000 realizations). It is argued that given the accuracy exhibited, the bound can be used direct-

the stochastic beam bending problem the WPI approxi-
this result, some prelim-
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inary work was presented herein pertaining to the accuracy of the WPI approximate technique 
for a particular class of SDEs. Specifically, a bound for the WPI based response transition PDF 
has been derived based on the Cauchy-Schwarz inequality for SDEs with constant diffusion, 
but nonlinear drift coefficients. This bound can be used as an a priori estimate of the expected 
accuracy obtained by applying the WPI approximate methodology. Further, due to its analytical 
nature, it can be directly used, perhaps, as an approximation of the solution process PDF with-
out resorting to further numerical treatment of the problem.  
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