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Abstract.Anovel stochastic averaging technique based on laeHi transform definition of theoscillator
response displacement amplitude is developed. f8adlgi a critical step in the conventional stoctia
averaging treatment involves the selection of amprapriate period of oscillation over which temporal
averaging can be performed. Clearly, for oscill&awith nonlinear stiffness defining such a periechot an
obvious task.To this aim, an intermediate stepftsnointroduced relating to the linearization okthonlinear
stiffness element, i.e., treating it as responsplitime dependent. Obviously, this additional apgmation can
potentially decrease the overall accuracy of thehtéque. Thus, to circumvent some of the abovédliions an
alternative definition of the amplitude process densideredherein based on the Hilbert transform. In
comparison to a standard definition of the respodssplacement amplitude, the herein utilized ampkt
definition does not require the “a priori” selectioof an equivalent natural frequency. Notably, tf@ature
provides with enhanced flexibility in the ensuitigchastic averaging treatment, and can potentiadigult in
higher accuracy. A Duffing oscillator is considergda numerical example, whereas the derived cldoet
analytical expression for the response amplitudéictary probability density function isset vis-s-pertinent
Monte Carlo simulation data.

1 INTRODUCTION

Stochastic averaging has been a potent mathemtdaldbr obtaining approximate solutions
to problems involving the vibration response ofhtly damped systems to broad-band
random excitation [1]. The main features of thehmegue relate to a Markovian
approximation of an appropriately chosen amplitati¢he system response, as well as to a
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dimension reduction of the origin@h-dimensional problem to am-dimensional problem.
Thus, not only the order of the problem is redulbgdalf, but also the Markovian character
of the response enables the use of well-establiggthiques for solving the corresponding
Fokker-Planck equation and for determining systesponse statistics [2].

Regarding the choice of the response amplitude, dfiggheresponse displacement is
typically utilized [1, 2], although other alternagi choices are available such as that of total
energy [3, 4]. Nevertheless, the choice of thedsemh response displacement amplitudefor
systems with nonlinear stiffness elements posesineimitations in the application of the
stochastic averaging technique [1]. A critical siepthe stochastic averaging treatment
involves the selection of an appropriate periodostillation over which the temporal
averaging can be performed. Clearly, for oscilstaith nonlinear stiffness defining such a
period is not an obvious task. To this aim, an taltal step is often introduced relating to the
linearization of the nonlinear stiffness elemeng.,i treating it as response amplitude
dependent[2, 5]. It can be readily seen that theduction of this intermediate step can
increase the degree of approximation and poteytiddcrease the overall accuracy as
compared to applying the approach to oscillatorgh wionlinear damping terms but with
linear stiffness [1].

In this paper, to circumvent some of the limitasodescribed above an alternative
definition of the amplitude process [6] is utilizédsed on the Hilbert transform [7, 8]. In
comparison to a standard amplitude definition of tlesponse displacement, the herein
utilized amplitude definition does not require tleepriori” determination of an equivalent
natural frequency. Notably, this feature providekanced flexibility in the ensuing stochastic
averaging treatment, and can potentially resulhigher accuracy. A Duffing oscillator is
considered in a numerical example, whereas theytacadl results are set vis-a-vis pertinent
Monte Carlo simulation (MCS) data.

2 MATHEMATICAL FORMULATION

2.1 Conventional stochastic averaging

Consider asingle-degree-of-freedom (SDOF) oscillatath linear damping and a
nonlinear stiffness element whose equation is gyen

X+ px+ glx) =w(t) (1)

where a dot over the variables denotes differaatiavith respect to time; x is the response
displacement;g(x) accounts for the nonlinear stiffness elemght: 2¢,w, is the linear
damping coefficientw, is the natural frequency of the correspondingdimescillator (i.e.
g(x) = wy?x); &, is the damping ratio; anat(t) represents a Gaussianwhite noise process
with a constant power spectrum magnit§ge

Next, a critical step in the stochastic averagirgatinent involves the selection of an
appropriate period of oscillation over which temgcsiveraging can be performed. Clearly,
for oscillators with nonlinear stiffness as in Et)), defining such a period (or equivalently, a
natural frequency) is not a straightforward tasktHis regard, traditionally, research efforts
have focused on combining a statistical lineararatireatment with stochastic averaging.
Specifically, during the first step of the process amplitude-dependent equivalent natural
frequencyw(A)is defined, and thus, the original nonlinear systériq. (1) is approximated
by its linearized version

X+ px+ w?(A)x = w(t) (2)

Meccanica dei Materiali e delle Strutture | VI (2016), 1, PP. 187-194 188



Pol D. Spanos, loannisA. Kougioumtzoglou, KetsotMRdos Santos andAndréT. Beck.

Once the linearized oscillator is defined, themamdard stochastic averaging treatment [5]can
yield a first-order stochastic differential equati(SDE) governing the response amplitude
processA(t). Typically, the equivalent stiffness element isedmined as the average gfx)
over one cycle of oscillation. That is,

3)

1 21
@) = o | gl cos)] cos() d

In addition to theoretical difficulties associatedth the above handling of cases with
nonlinear stiffness [1, 5, 9], it can be readilgrs¢hat the introduction of the intermediate step
of Eq.(2) (i.e. g(x) = w?(4)x) increases the degree of approximation, and pathnt
decreases the overall accuracy degree as compared dtandard stochastic averaging
treatment of oscillators with linear stiffness terfd]. Further, a choice must normally be
made regarding the definition of the amplitude pest(t) [6] with
A2(E) = 2 + (L) )
w(A)
being, perhaps, the most widely utilized. Note timatcases of oscillators with nonlinear
damping terms, but with linear stiffness, the intediate approximation of Eq.(2-3) is not
required, and the amplitude of Eq.(4) can be dyettfined asa?(t) = x? + (x/wg)?; see [1]
for a discussion.

2.2 Stochastic averagingbased on a Hilbert transfan definition of the amplitude

In this section, to circumvent some of the limdas described in section 2.1 an alternative
definition of the amplitude process [6] is utilizbdsed on the Hilbert transform [7, 8]. In
particular, relying on the standard assumptionste¢hastic averaging [1, 3], and assuming a
pseudo-harmonic response behavior, the responsegsesy andx, are defined as
x = Ay cos (P) (5)
and
x = —Ay¥ sin(¥) (6)
respectively, wherd, is the response amplitude, ai#ids the response instantaneous phase.
Both4,; and Ware assumed to be slowly varying functions withetinin EQs.(5-6) the
amplitudeAy is defined as
Ay® = x? + %2 (7)

while the response instantaneous phase is defsed a

Y = tan~! (;) (8)
andrdenotes the Hilbert transformxafiven by
%) = lfm @ o Lo 9)
mT)_,T—t mt

In Eqg.(9), the symbel denotes the convolution operator. Note that in ganmson to the
standard amplitude definition of Eq.(4), the Hilbeansform based definition of Eq.(7) does
not require the determination of an “equivalenttunal frequency, at least in an “a priori”
manner. This feature provides enhanced flexibilitythe ensuing stochastic averaging
treatment. Further, in addition to the amplitudérdigon of Eq. (7) that refers to the response
displacement process, an amplitudeAd; for the restoring forceg(x)is defined in the
following as
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g(x) = Ag cos (¥) (10)

The restoring force amplitudg is considered to be a slowly varying with time dtion as
well, while it can be readily seen from Egs.(5) ébd) that in generad; = A (Ay, ¥).The
introduction ofA is motivated by alternative amplitude definitiansthe literature such as
the energy amplitude [3, 4], and it is suggesteat th serves more naturally thady, to
describe the problem at hand where the difficulireshe mathematical treatment relate to
g(x). For comparison purposes, note that based omational treatment of section 2.1 and
according to the approximatigfx) ~ w?(4)x, the amplitude of the restoring force in that
case is defined as?(4)A.

Next, differentiating Eqg. (7) with respect to timeking into account the relationships
% = —x/¥ and% = —#/¥, and solving fotd,yields

Ay =~ [W(©) = B+ x¥? — g(x)] (11)
Substituting Egs.(5-6) and Eq.(10) into Eq.(11¢l9s
in(W)w(t . A W) sin(W
H= —w — BAy sin?(®) — WAy cos(WP) sin(¥) — r_cos( - ) sin(t¥) (12)
while averaging over one cycle of oscillation ('ybiéf...dw) leads to
i, = _ﬁAH B sin(‘l’.)w(t) (13)

2

Note that in deriving Eq.(13) oscillatory termstbhé formsin?(¥) andcos(¥) sin(¥) have
vanished, while the last term on the right-hancdt©tlEqg. (12) containing the restoring force
amplitude disappeared as well. Next, followingraikdr procedure fol yields the equation

. ) . 2 2
Y2 = sin?(¥) — B ¥ sin(¥) cos(¥) + A—cos(‘l‘) g(Ay cos (¥)) — A—cos(‘}’) w(t) (14)
H H

Applying astraightforward averaging procedure on(E4) the average over one cycle of the
term cos(‘P)g(AH cos (‘P)) will result to the conventional definition of thequivalent

stiffness elementw?(4)of Eq.(3). However, substituting in Eq.(14) the toeimg force
amplitude(Eq.(10)), and then averaging over onéecyields

W2 = 28— 2 cos(W) w(D). (15)

Solving Eq.(15) for¥, and utilizing a Taylor expansion where the figb terms are kept
leads to

p= [AR_ 2 ~ |Ar _ cos@w®) 16
‘P—\/AH AHcos(‘P)W(t)~ » Nk (16)

Next, following a standard stochastic averagingcpdure as described in [5], and relying on
the broad-band character of the excitation proeds3, Eq. (13) and Eq. (16) can be written
as

. BAu o J7So
Ay = 2 +21/ARAH‘P+ ¥ 1(0), (17

and

‘P=\/j£— VS ) (19)
H ARAy

respectively, wher@(t) and&(t) are white noise processes with unit intensity. Nbe in
deriving Egs.(17-18) the Wiener-Khinchinrelationdias been utilized,

i.e.,fooo cos(W7) E[w()w(t + )] dr = 1Sy, wherethe derivative of the instantaneous phase
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¥ is construed as the frequency (rad/sec).Additisimaplifications can be made to Eq.(17) if
only the mean value d¥ as given in Eq.(18) (i.eP = \/Ar/4,) is substituted in Eq.(17).
That is,

_'B_A_}_T[_SO_F@ﬁ(t) (19)

2 2AR AR
An

Related to EQ.(19) is the Fokker-Planck equati@j [1

A=

(e 50 )

2 24, 1d4, | % da, Tda, |7 PAnD at

Ay AH
which must be solved for the response amplitude PO, t). Note that for the linear case,
i.e. g(x) = wix, considering Eqgs.(5) and (10) yields,/4, = w3. In that case the F-P
equation admitsthe Rayleigh PDF as the solutiortHerstationary response amplitude PDF,
2
i.e. p(4y) =i—§’exp [—%], where g2 =;—j}°2. In the general nonlinear case, clearly, the
0

dependence afi; on ¥ is to be eliminated (e.g. via an averaging scheme) an explicit
relationship is to be found betwegnand Ay of the formAg = Az (Ay). In this manner
Eq.(19) will depend only om, and Eq.(20) can be solved fofA4,,t). The approach is

demonstrated in the following section consideririgudfing nonlinear oscillator.

1 d {nSO dp(AH)+ d

Sy ]} _ dp(Ay, t) (20)

3 NUMERICAL EXAMPLE: DUFFING OSCILLATOR
For the case of a hardening Duffing oscillator, nbalinear function of Eq.(1) becomes
g(x) = wix(1 + ex?), (21)

where the parameter- 0 capturesthe nonlinearity strength. Further, thewveational
averaging of Eq.(3) yields an amplitude-dependenfvalent stiffness element?(4), and a
restoring force amplitude of the form

W (A)A = w3A[1+e2 42, (22)
whereas considering Eq.(10) a relationship forHiiibert based restoring force amplitude of
the formA, = A (Ay, W) is determined. That is,

Ap = wiAy[1 + €Ay cos?(W)]. (23)

Next, to eliminate the dependence 4f on ¥ in Eq.(23), a potential treatment relates to
applying an averaging scheme over one cycle ofllasonh to the nonlinear term
eAy*cos? (W) yielding

Ar = w24y [1 + E%AHZ]. (24)
An alternative treatment relates to accountingttier maximum influence of the nonlinearity,
and thus, considering the envelope of the nonliteraneA,*cos?(¥). That is,

Ap = w3Ay[1+ eAy?). (25)

The accuracy of the three approximations of Eg}.62@l (24-25) in capturing the restoring
force amplitude is examined in the following exaepbpecifically, considering a Duffing
oscillator with the parameter values, = 2 rad/s, & = 0.01, f = 2¢w,,e=1, and S, =

2¢w} /m, Fig.1 shows a typical realization of the restgrfarce g(x) together with the three
approximations of the restoring force amplitudeEofs.(22) and (24-25). It can be readily
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seen that only Eq.(25) can capture with high aayuthe envelope of the restoring force,
while the alternative two approximations (Eq.(28) &q.(24)) underestimate the peaks of the
restoring force significantly.
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Figurel: Hardening Duffing oscillator restoringdertypical time-history, and comparisons betweaioua
approximations of the restoring force amplitude.

Thus, it is anticipated that utilizing Eq.(25) ihet F-P Eq.(20) will yield a more accurate
response amplitude PDF than the one correspondinfet traditional stochastic averaging
scheme (EQ.(22)). In particular, considering thandard approximation of Eq.(22),
substituting inthe F-P Eq.(20), and solving for theationary(i.e. 242 = 0) response
amplitude PDF vyields [5, 10]
A [143ea2 A—2+e£ 26

P(4) = C—=——exp [——(2 oz“) - .
where C is a normalization constant.Next, substituting Eg)(into the F-P Eq.(20), and
solving for the stationary response (Hilbert transf based) amplitude PDF yields

2 4
mnfrreant [ (Aeets) (27)

P(A) = Cy———exp | ———;

where Cyis a normalization constant.For comparison, thdyéinal exact expression for the
stationary amplitude PDF of a Duffing oscillatorriged by Crandall [11] following two
distinct pathways (i.e. based on energy considerstiand on peak statistics) is included as
well. This is given by

(255 sets”) (28)

40F(k,t/2) [Ap+eAg®
p(Ag) = AELELD (Atete

I(e)\/1+eAE2
where k = /2 e 2,I(e)—Z\/_f exp[ (—+e—)]dA and F(k,m/2) is the

complete elliptic integral of the first kind.
The stationary amplitude PDFs of EqQs.(26-28) awdt@d in Fig.2 and compared with

)exp -

o2
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Monte Carlo simulation based response amplitude P&fEmates utilizing 10,000
realizations. To this aim, a standard 4th orderdeukuttanumerical integration scheme has
been utilized for solving the nonlinear governing.®) in conjunction with Eq.(21). In
producing the MCS based PDF estimates both theeHittansform definition of the response
amplitude (Eq.(7))was applied on the response atgphent realizations, and the solution of
the polynomial Eq.(4) was utilized. Focusing on.(y it is seen that both definitions yield
approximately the same MCS based amplitude PDF weiti® minor differences.

T T T T

| ¢—MCS: Hilbert Transform | |
1 MR l_ri-:_.h MCS: Eq. (4)
‘ - - -lwan and Spanos (1978)
----- Crandall (1963) 1

—Current Approach

L

0 05 1 15 2
Amplitude (m)

Figure2: Hilbert transform based amplitude statigriRDF, and comparisons with various approximate
amplitudePDFsand with pertinent Monte Carlo simatatiata.

Regarding the accuracy of the approximate stoahasgraging based amplitude PDFs, it
can be readily seen that the Hilbert transform thaseplitude PDF derived herein (Eq.(27))
exhibits significantly higher accuracy than the étade PDF based on the conventional
stochastic averaging treatment. It can perhapsripeed that one of the reasons for this
enhanced accuracy is the ability of the hereinothiced restoring force amplitudg, to
capture the envelope of the restoring fogper)better thanw?(4)A. In fact, the Hilbert
transform based PDF exhibits practically the samauracy level as the analytical exact
solution of EQ.(28). Note, however, that the anefftnature of the approach byCrandall [11],
renders it case-dependent, and clearly, lacksdhsatility of a stochastic averaging treatment.

4 CONCLUSION

A novel stochastic averaging technique based onllzeit transform definition of the
oscillator response displacement amplitude has Ipeeposed. It has been shown that in
comparison to a standard amplitude definition of tlesponse displacement, the herein
utilized amplitude definition does not require tleepriori” determination of an equivalent
natural frequency. In fact, this feature has predicenhanced flexibility in the ensuing
analysis, and has enabled the determination ofstorieg force amplitude capable of
capturing the envelope of the restoring forgéx)more accurately than a conventional
stochastic averaging treatment of the problem. ©kerall enhanced accuracy of the
technique has been demonstrated via a numericalg&aconsidering the Duffing hardening
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oscillator, and by comparison with pertinent Moi@arlo simulation data. Obviously, the
concept of stochastic averaging on Hilbert tramaftlased amplitudes has its own meritand
can be supplemented by alternative approximatiémslevant quantities not discussed in this
paper.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Roberts, J.B. and P.D. Span8spchastic Averaging - an Approximate Method o¥iggl
Random Vibration Problemiternational Journal of Non-Linear Mechanics, 898
21(2): p. 111-134.

Kougioumtzoglou, I.A. and P.D. Spands) approximate approach for nonlinear system
response determination under evolutionary stochasstcitation.Current Science, 2009.
97(8): p. 1203-1211.

Redhorse, J.R. and P.D. Spamd<$;eneralization to Stochastic Averaging in Random
Vibration. International Journal of Non-Linear Mechanics, 299(1): p. 85-101.

Spanos, P.D. and I.A. Kougioumtzogldsalerkin scheme based determination of first-
passage probability of nonlinear system respoBs$eicture and Infrastructure
Engineering, 201410(10): p. 1285-1294.

lwan, W.D. and P.T. SpandResponse Envelope Statistics for Non-Linear Osora
with Random-Excitationlournal of Applied Mechanics-Transactions of trsen&, 1978.
45(1): p. 170-174.

Langley, R.S.0On Various Definitions of the Envelope of a RandRyocess.Journal of
Sound and Vibration, 198&053): p. 503-512.

Feldman, M.Hilbert transform in vibration analysidMechanical Systems and Signal
Processing, 20125(3): p. 735-802.

Krenk, S., H.O. Madsen, and P.H. MadsBtgtionary and Transient-Response
EnvelopesJournal of Engineering Mechanics-Asce, 198BX1): p. 263-278.

Ariaratnam, S.T.Discussion on: "Response envelope statistics forlimear oscillators
with random excitation”, by W. D. Iwan and P.-T.$panosJournal of Applied
Mechanics-Transactions of the Asme, 193.

[10] Spanos, P.D., A. Sofi, and M. Di PadNgnstationary response envelope probability

densities of nonlinear oscillator§ournal of Applied Mechanics-Transactions of the
Asme, 200774(2): p. 315-324.

[11] Crandall, S.H.Zero Crossings, Peaks, and Other Statistical Measof Random

Responseslournal of the Acoustical Society of America, 198%11): p. 1693-&.

Meccanica dei Materiali e delle Strutture | VI (2016), 1, PP. 187-194 194



