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Abstract. The dynamic response of building structures subfeto seismic loads has been
often examined using the single-degree-of-freedoateimthat provides a good estimation of
the fundamental response mode, which is norma#iparsible for overall structural failure.
A SDOF analysis can give a preliminary assessnmma fprotective structure, even in cases
in which the constitutive models are somewhat nsoraplex. This paper presents a general
treatment to develop approximate solutions for diglastic response of SDOF structures
subjected to base harmonic pulse by means of anahprocedure on purpose developed.
The failure is assumed depending on the formatfiasingle shear hinge and the results are
expressed in general terms for application to resses.

Sommario. La risposta dinamica degli edifici alti soggettl azioni sismiche é stata spesso,
in via semplificata, esaminata con riferimento astesmi ad un grado di libertd, che
forniscono informazioni importanti sul primo modobwbrare della struttura e quindi sulle
modalita di collasso. In questo lavoro viene préatnuna trattazione generale che deriva
soluzioni approssimate per la risposta rigido pleatdi strutture ad un grado di liberta
soggette a pulsazioni armoniche. Si presentanosultati di una procedura numerica
sviluppata ad hoc e relativi a una mensola vergcal cui il collasso avviene per formazione
di una cerniera a taglio all’incastro.

1 INTRODUCTION

Rigid plastic approaches have been used bothdef ahd reinforced concrete structures, due
to the advantages offered in term of simplifiedigiesind seismic assessment procedures

large amount of literature now exists for the dymapiastic bending response of structural
elements, since bending and shearing hinges refytrgeaeral characteristics of the dynamic
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plastic response of several one and two-dimensistraktural elements under transverse
loacf. In both the bending and shear problems the imporguestion is linked to the
localization and extension of plastic hingels fact in some cases the length of the plastic
hinge zone is evaluated by numerical experimentsa floasic response pattern and taken into
account by means of a phenomenological factorhéndase of structures in which shear
failure can be easily recognized (rc shear wallsyator shafts, whole framed structure
buildings) the continuum model provide useful resuin some cases it has been shown that
even when only flexural behaviour has been takemaccount, a different shear distribution
can be evaluated. This paper presents a geneasingat to develop approximate solutions
for rigid-plastic response of structures subjedtetlase harmonic pulse, that has been shown
in literature as an appropriate approach to theaghya analysis. A numerical procedure has
been on purpose developed. The constitutive modelved is the rigid plastic one and the
fundamental equation of the problémre presented. The case study is a vertical esatil
beam, with base support, constant mass and ingigtabution, subjected to only ground
acceleration. The procedure can be successfullljegipip the case of impulse loadin@he
natural development of the problem takes into actdlbe presence of a stochastic forcing
load on the systen

2 STATEMENT OF THE PROBLEM

Reference is made to an elastic perfectly plastigylQ) where 0Q=0Q,U0Q, is the total
boundary of the bodypQ,10Q,=0, 0Q,,0Q, are the free and the constrained boundary
of the bodyQ | A(t) t(x) are the surface loads on the free boundafy, A(t) b(x), are the
body forces inQ | u,(x,t) is the assigned velocity vector anx,0)=0 on 0Q,, A(t) is

the time dependent load multiplier function. Thelgem solution is defined by the velocity,
strain rate and stress fields respectively denatittd u(x,t), £(x,t), o(x,t). The strain rate
and velocity fields satisfy the admissibility cotidins, while the stress field is equilibrated
with the applied loads. The approximate resporeld*fis assumed in the form, wheg®(x)

is an assigned vector i.e. the modal form of théianpdepending on the initial position only
and L(t)is an unknown scalar function of the titn&he approximate solution is composed by

the admissible velocity fieldi” (x,t) satisfying the boundary conditioin (X, t)=u,(x,t) on
0Q, and the initial conditionsy” (x,0)=0 in Q and dQ,. The stress fields(x,t) is in
balance with the assigned loadgt) t(x) and A(t) b(x) and with the inertial forces
—u(X)U"(x, 1), beingu(x) the mass density function. Applying the principfevirtual power:

jQp(u—u*)Equ—u*)dQ+jQ(o—d*)E(s—é)dQ:O. 1)

A suitable form of the first derivative a(t) = %_[Qu(u —-u’)Qu-u')dQ is calculated after

some manipulation as follows:
da
dt
Since the normality rule holds true the above i@abecomes:

:—j (0-0)E +(G —o)[tfdQ:I G -0)E+(0-6)E d. )
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da

dt
where the last term in (3) results non-negativee @pproximation measut) in (3) is
obtained integrating the previous relation frono Qimne t:

:j [(o*—o)Eﬁ+(o—o*)E§]dQsI (G -6 )E dQ =r ()20 (3)

A(t) < A* (1) = Ir(t) dt. 4)

The real velocity field at time t has been subtduwith the approximate one. Since
u’(x,0) = 0 the function L(t) satisfies the initial conditiaf0)=0. The acceleration field and

the strain velocity field” can be determined, in the form:
U, t)=@X)Lt) ; &xt) =YKL (5)

being ¥(x) the vector involving the strain generalized comgmas associated to modal
vector ®@(x) . The principle of virtual velocity gives:

L P, I dS+ [ F &, O)-pi Ji 2= & & DE & D (6)

so that the L(t) value can be determined througggiration:
J, P n@(x)ds+ | FT . 00(x) -] 0" (x ¥ (x) @
jgu(x)tl)T (x)@(x)dQ '

The method can be applied to pulse loads, withwieeconditions that the tractions applied to
0Q, are null and the initial velocities are prescrilmer the whole structure at tinte=0;

thereafter, no external forces do work on the stmec

L(t) = ()

3 THE CANTILEVER BEAM

The dynamic response to base support excitati@enveftical rigid-perfectly-plastic cantilever
beam is considered. The local yield kinematismegponds to the activation of a shear hinge
in which the total shear force T(z,t) attains itaibd values. The mechanical characteristics
are shown in Fig. 2, whene(z) is the linear mass density of the beam(t) is the

horizontal motion of the supported section, T(zst)the shear stress whose bounds are
T.(z2)and T (z), 6(z,t) is the shear strain arfd is the total length of the beam. The plastic

deformation depend on the shear stress only, sa¢herence is made to the shear strain as
above defined. The structure response is then ctesized by a rigid-plastic law depending

on the shear strain raf¥z,t) according the following relations:

[T@)-T. @[T+ T @ 6@t=0 .- T(3<s Tzks T(F  ®

In the cross section at the z level the relative @nsolute displacements are respectively:

v(z,t):Ie(x,t)dxzﬂe(xx)a dx , u(ztF y (tF vzt )
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Figure 1. Rigid-plastic cantilever beam with basstion and limit shear valugs); constitutive law (b); shear
strain of an infinitesimal element of the beam

From (9) the instantaneous condition of dynamidldayium involves the inertial forces only:
0T (z,1)

T = u(z)[](z, t): U (Z[Lﬁ (t)+ "V(Z, ti' (10)

The kinematic compatibility states that the plagticain rate is equal to zero everywhere
except in the active hinges:

6\'/(z,t)= ,

B(z,t) = v'(z,1). (11)

Integrating the above relation (11) with respec, tib has:

v(z,t):I\/(x,t)dx:Ie(x,t)dx:je(x,t) H(z- x)d»
. " i (12)
V(z,t):jé(x,t)dx:Ié(x,t) H(z— x)dx

with H as the Heaviside function. In the followitttge case of only one shear hinge active is
considered, whose time dependent positiog,i¢t). The relative displacement velocity and

the plastic strain rate have the form:
V(z, )= W (OH[Z- 7, (1] , 8(z,)= Vi(z,1)="y ()3 [z~ 7 (]

where d[z - z,(t)] is the Dirac function relative to the plastic rengosition. The expression
of the shear stress in this case can be obtained:

T@ 0= t, O ke9dx+ [ )90 Dax , (2,07 "y ( w 0aix+ v, (0] woo Hix—2o(Dldx
and p(z) is the mass density. The mass functions are:
m@)= [ueodx : m, (2.3 OF [ 0)Hx- 7 (D]dx (13)

with
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dm(z) _
dz

om,, [z, z, (1)]
0z

om, [z,7 ()] _

uz) Y

=U(2)H(z-7 ()] , ~u(2)7 (YH[z- 7 (1),

T(z,t) can be written in function of the masses:
T(z,t)= 10, (Ym(2)+Y ()m, [z,7 (1),
and the derivatives are:

TR0~ u2), 0+ v, 0
y4

OT((;,t) = m@)G, (O+ % (Om, [2.2 OF 7 O (t)amH [;,Zzo (t)]

Considering that in the plastic hinge the sheareqpal to vyield vaIueTo(z) and
approximating the shear function by the Tayloresii has:
z=7,

} .
2=,

If at the instant t+dt the position of the plasshear hinge is ;#dz, it must be also
T(z, +dzy, t+ dt)= T, (z+ dz , andT(z, + dz,, t+ dt)= T, (z )+ T; (% ) dz so that:

[M(Zo) Ug (1) = T5(26)] Zo( 1) + (2 ) Uy (D1 ¥ (1) My, (25,2, (DF (€
whence, taking into account also the definitiomafsses, it is finally:
m(z, )4y (t)+ 'V (1) H(O) Mz, (1)]
H(Z,) Ug (1)~ To (20)
The quantity z,(t) represents the evolution of the plastic shear hinge with the flihe
motion of residual plastic deformatio®s(z,,t) is:

omy [z, 7, (1)]
0z

T(z, +dz,,t+ dt)= T, (z, F{H (2 )y, (v (t)amH [;,Zzo (]

z

+{m(zo YU, (0)+ % (0 My [20.2 (OF % ()7, “’w

(14)

z,(t) =~

er(zmt):\.ll—(t)
Z,(1)
and its value does not vary until the plastic hinge formanagt the same position. The
derivation of the acceleration®(z,t) is trivial.Given the functionv(zt), it is possible to
update all the quantities already known at the same time so that

T(z,t+ dt)=J‘u(x)['ug (t+ dt)+ v(x,t+ dt)]dx

The load due to the inertial forces at the abscissa z is given by:
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a(2)= (z)[ i 0+ [80x,0 dx]
and the total shear at the abscissa z is:
T(z,1)= —j a(x) dx= g, (1 m(z)+Iu (xjé (v, 1) dy dx (15)

Remembering (8) the double condition of a crossiaeat the abscissa, in active plastic
phase and all the upper portion of the beam plbtimactive gives:

[T(z, ) =T, (2)I[T(z,, )+ T (2))]=0

(16)
T, (2)<T(z,t)<T,(z) , Oz>2
and then:
P T, (2,) b T, (2)
t B(y,t)dy =—2—= t B(y,t)dy =—>2—-
uQW! YOY @) UQ(H! YOV @) an
Le L@ LE ., L0 L@ L@
m(iz) m(z) m(z) m(iz) m(z) m(z) °

In general, pulses that occur during earthquakes have qualitative qaadtitative
characteristics that can adequately be approximated. Several strond grotions contain in
fact an acceleration pulse responsible for most of the inelastic defannwdtistructures.
These considerations are the basis of the numerical analysis perfdimeechse study is the
vertical cantilever beam subjected to harmonic base motion anuetyim yield response of
the cross section in the motion planReference is made to figure 2. The governing equations
of the dynamic elastoplastic problem, based on (10) and (12), are:

g—z = i, (1) + ¥(z, O] = ;{ug (t)+J"e(x,t) dx] =p['ug (t)+j'e (x, ) H(z- x)d%
T(h,)=0  OtO[0T] (18)

T(z,,t)=T,(z,,1), z plastic shear hinge positiof,. (z,,t) =T,(z,,t) == T (z,1)

From the numerical analyses successive extensions and contrattioaplastic front can be
evaluated, according the forcing time history. In the followirggupes numerical results are
reported: figure 2 contains the mechanical characteristics during thetioedaf the plastic
front, while figure 3 reports the behaviour in a single pul®e extension of the plastic
boundary moves starting from the abscigsah/2 and evolves until the plastic excursion

stops, corresponding to the attainment of the plastic threstymlelading and contractions of
the plastic front and related elastic returns can be observed.
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Figure 2.Time histories of the functions: lower hdya) and velocity of the plastic front (b); plasthear rate at
the upper bound (c), in the middle (d) and at theebsupport (e); base accelerogram (f);
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Figure 3. Shear stress (a) and deformed shape(b)vthe base accelerogram (c) and the lower bafuihe
plastic hinge (d)
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The input data used in the numerical analysis are:
u(z)=5x10 kgm* , Yy (tF g sim t with @& 0.2g ,w= 3séc
D=6sec , T (2F az+ bz c¢ with a 2 10 N , = x8 10 Nlm ,=c °1C

The behaviour is represented above, together watthamatic picture of the cantilever beam
and its deformed shape corresponding to the agiaatic hinge extension. The maximum
velocity lower bound corresponds to the attainmedrthe maximum spreading of the plastic
front. The time histories corresponding to the atioh of the shear strain rate in three
significant positions are picted. It is worth ngfithat both the diagrams in figure 3 have a
sudden change of sign due to the inversion of thgepsign.

4 CONCLUSIONS

A dynamic analysis method involving rigid-plastieHaviour has been presented. The
response of a SDOF structure subjected to harmpuige base motion has been calculated in
the whole time domain by means of a step by stéggration procedure. The procedure
presented is suitable when a shear failure canebegnized in the global behaviodrhe
procedure can be extended with a limited computatieffort to elastoplastic structures with
several degree of freedom and generic ground aetiele. The proposed procedure makes a
set of necessary information available to the bugddesigner: the extension of the plastic
front to detect the localization of damage areathedstructural elements of special attention
are supplied by the analysis. The analysis of ffstesn under stochastic loading force is
undergoing in the next future.
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