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Abstract. The probabilistic analysis of structural systenubjected to seismic excitations
requires the spectral characterization of both thgut excitation and the structural response.
Moreover, in order to reproduce the typical chaexcstics of real earthquakes ground-
motion time history, the seismic excitation shob&l modelled as a fully non-stationary
stochastic process. In the framework of stochasttiactural analysis, the time-frequency
varying response function (TFR) plays a centrakriml the evaluation of the statistics of the
response of linear structural systems subjectatbtoseparable stochastic excitations.

In this paper a method to evaluate in explicit eld$orm TFR functions of linear non-
classically damped structural systems under futig-stationary excitation is proposed.

1 INTRODUCTION

One of the most important problem in seismic engjiimg is the correct characterization of
the ground motion acceleration. In code-based seislasign and assessment it is often
allowed the use of real records as an input forinear dynamic analysis but, due to the
difficulty in rationally relating the ground motierto the hazard at the site and the required
selection criteria, the use of artificial spectraompatible accelerograms is preferred.
Usually the stationary Gaussian stochastic modehdspted although the corresponding
artificial accelerograms have an excessive numblercyeles of strong motion and
consequently they possess unreasonably high emempent. Furthermore, the stationary
model suffers the major drawback of neglectingrba-stationary characteristics of the real
records: the changes in amplitude and frequencientnindeed, the time-varying amplitude
iIs due to the natural evolution of the earthquakeuigd motion, while the time-varying
frequency content is prevalently due to differemival times of the primary, secondary and
surface waves that propagate at different velacitieough the earth crust. The stochastic
processes involving both the amplitude and theuegy changes are referred in literature as
fully non-stationaryrandom processes while the so-callpaasi-stationary(or uniformly
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modulatedl random processes present changes in amplituge lonbrder to define théully
non-stationary stochastic inputthe Priestley spectral representation of non-stationary
processes is the most adopted. In the Priestleyemibe Evolutionary Power Spectral
Density(EPSD function is introduced

In the framework of stochastic structural analysi® time-frequency varying response
(TFR) function plays a central role in the evaluatidrine statistics of the response of linear
structural systems subjected to fully non-statigrstochastic excitatiofi€.

In the proposed approach, the main steps for thkiatron of the statistics of the response
are: i) the evaluation of complex eigenpropertiethe non-classically damped system; ii) the
use of the state-variables to evaluate in exptidsed-form theTFR vector function of the
structural response; iii) the evaluation in clogedn of the EPSD matrix function of the
response; iv) the definition of th@on-geometrical spectral momer(tsGSM), in the time
domain, as element of the pre-envelope covariarateixh® v) the validation of the proposed
procedure by the Monte Carlo Simulation.

2EQUATIONSOF MOTION

Let consider the equation of motion of a linearegaentn-degree-of-freedomn(DOF)
non-classically damped structural system whose mymabehavior is governed by the
following equation of motion:

M U(t) + Cu(t) + Ku(t) = -M tF () (1)

whereM, C, andK are the(nxn) mass, damping, and stiffness matrices of the tstreia(t)

is the(n><1) vector of displacements, having foth elementu, (t) and a dot over a variable

denotes differentiation with respect to tinaeis the influence vector anB(t) is the ground

acceleration. It has been recognized that, fromnapeitational point of view, to operate in the
modal subspace is more convenient than in the nspate, for non-classically damped
structures too. To this aim let introduce the mod@rdinate transformation(t) =®q(t),

where d)z[q Q .. (pm] is the modal matrix, of ordemxm, collecting them
eigenvectors @, normalized with respect to the mass matiik, solutions of the
eigenproblem KM ®=® Q™ with the orthogonality conditon®'M ®=1_. The
diagonal matrixQ collects the undamped natural circular frequeagyand|  is the identity

matrix of orderm. Once the modal matrixp is evaluated, by applying the coordinate
transformations to Eq.(1), the following set of thst order differential equation can be
written in the 2+ state vector variable as

y(t)=Dy(t)+wF (t) 2)

ool el e

In the latter equationg/(t) is the vector of modal state variablgs=-®'M 1 is the

where

vector of participation factor an& =®'C ® is the generalized damping matrix which for
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non-classically damped systems is not a diagonatixnd herefore, the nodal response in
state variables can be determined by the folloviack substitution:

s e

In order to decouple Eq.(2) a further coordinatéas$formation must be introduced, that is
y(t) =¥x(t), where¥ =y, v, .. w, W, V¥, .. ¥, |isacomplex matrix, of
order 2mx2m, collecting the &h complex eigenvectorsy;, solutions of the eigenproblem

D¥=% T with the orthogonality conditior?’A ¥ =1, . The asterisk over a variable

denotes complex conjugate quantity aRdis a diagonal complex matrix listing then2
eigenvalue of the non-classically damped systenteQhe complex matriX¥ is evaluated,
by applying the new coordinate transformations @), the following set of i decoupled
first order differential equations is obtained:

X(t) =Tx(t)+¥Y'A wF(t); x(0)=0; A=LE Ig} (5)

m

where x(t) is complex vector of ordem2 Finally the nodal response can be evaluated as:

z(t) =Imex(t) (6)

3 CLOSED-FORM SOLUTION FOR THE TIME-FREQUENCY VARYING
RESPONSE FUNCTION

The TFR function vector plays a central role in the evaua of the statistics of the
response of linear structural systems subjectdabtb separable or non-separable stochastic
excitations. In fact, by means of this functionijsitpossible to evaluate in explicit form the
EPSDfunction matrix of the response and consequeh#ynon-geometric spectral moments,
which are required in the prediction of the safefystructural systems subjected to non-
stationary random excitations.

By means of the modal transformation Eq.(4), the-sidedEPSDfunction matrix of the
nodal response, in state variables, can be evdluafter very simple algebra, as follows:

G,,(wt,t,)=NG, (wt,t,)I" . (7)

where theEPSD function matrix of the modal response, in stataaies, G, (wt;,t,), is
given as:

G,y (wt,1,)=Go(@) Y™ (wrt,) YT (wit,) (8)

with G,(w) is the embedded one-sidgmbwer spectral densitfPSD function of the
stationary counterpart of the input procésg) .

The function vectorY (wt) is the so-calledFR function vector of the modal response, in
state variables. The vectdr(a),t) can be evaluated as the solution of the follovdegof 2n
first order differential equatidn
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Y (wt)=DY (wt)+wf (wt)U(t); Y(w,t) 2, 9)

subjected to pseudo-forcé(wt) = exp(-iwt)a(w.t). In the previous equatiol (t) is the
Unit Step function. Since the following coordinatgnsformation holds:
Y(wt) =¥ X(wt) (10)

it follows that the first order differential equari (9) can be rewritten as a set of @ecoupled
firs order differential equations:

X(wt)=TX(wt)+¥ A wf(wt)U(t); X,=X @t )2F A Y, (11)

This equation represents the differential equatddnmotion, in state variable, of a
quiescent dynamical system at tit®, subjected to a pseudo-fordéw,t). If the particular

solution of Eq.(ll),Xp(a),t), can be determined in explicit form, thER vector function can
be written a%

X (wt)={X, (wt) + exp(rt)[ X, - X, (@,9 U (1) (12)
Then, according to Eq.(10), the solution of Eqd&) be written as:
Y (wt)=¥ X (wt)= ‘I’{Xp () + exg(T't)[ X, =X p(a),()]}IU(t)

(13)
={¥s (@) -0(O[¥o-Y,(« Ju()
where @ (t) is the transition matrix in modal subspace defiasd
O(t) =Yexp(I't)¥ A (14)

The analytical expression of the particular solutiector Yp(a),t) =¥ X, (wt), can be

easily obtained in closed form for the most commumdels of modulating functioa(cw, t)
proposed in literatufe

In the framework of non-stationary analysis of stuwes, time-dependent parameters, very
useful in describing the time-variant spectral mmies of the stochastic process, are: i) the

mean frequencyyy (t) which evaluates the variation in time of the maprcrossing rate of
the time axis, ii) the central frequencyy., (t), which scrutinizes the variation of the

frequency content of the stochastic process wigpeet to time and iii) the bandwidth
parameted, (t). The three functions introduced before can beuatatl as a function of

NGSMs and have been defined, respectivefy, as

et Pan® o Rl 6 Rl O
27 /]o,urq (t) Ao,qq(t) AOvUrUf(t)AZ,ul,l(t)

where the functionsd,,, (t) and A,,, (t) are real ones whilet
function. These functions are the so-cal@SM>*°28

Oy 1y (1) is @ complex
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4 NUMERICAL APPLICATION

4.1 Generation of response spectrum compatible artificial fully non-stationary
earthquake acceler ograms

The first aim of this section is to obtain fullymgtationary artificial earthquakes that are
spectrum compatible and able to reproduce the featnres of real recorded time histories; it
Is important to notice that the comparison withyoahe result cannot be relevant, so it is
necessary to select a set of real recorded eakbguia order to perform a statistical analysis.

The chosen database is the “PEER: Pacific Eartlegiakineering Research Center: NGA
Database”; 30 recorded accelerograms have beetteskli® perform the statistical analysis.
In particular, all of them are time histories ofsseic events that happened in the Imperial
Valley (California}®. Since all the events have a magnitude superér 5h5 and according to
the EC8 instructiort$ a spectrum of type 1 (see Figure 1a) is chosearget spectrum. The
peak ground acceleratiofPGA) is assumed equal to the average of the peak droun

acceleration of the recorded evem§:2.483m/§ and, for the type “C” of soil, the

parametersS=1.15, T, =0.2s, T. =0.6s and T, = 2.0s are selected.

An efficient method to generate stationary art#ficspectrum compatible accelerograms
was established by Cacciola et?athe main problem is that the stationary modekhsf
ground motion acceleration process is unable tohctite characteristics of real earthquakes,
such as the amplitude and frequency modulatioh@ttgnal; then the energy of the artificial
time history is proportional to the duration of fw®cess itself. So, mathematically speaking,
stationary samples have infinite energy. A modifieethod®, that is able to generate artificial
spectrum compatible earthquakes, for fully nonistary (when both time and frequency
content change) random processes, is herein ugedppiying the procedure proposed by
Cacciold®. Thanks’ to this iterative method it is possitieobtain the one-side®SDfunction

of the so-called “embedded” stationary counterpaocess,G, (o). Furthermore in order to

take into account the main features of seismic mglomotion, that is the “build-up” and the
“die off" segments as well as a decreasing domirfeequency, Spanos and Solortos
proposed the following time-frequency modulatingdtion a(awt):

a(wt) = g(a))texp(—a(a))t)IU(t) (16)

where the functionse(w) and a(w) should be defined analyzing the recorded

accelerograms. The fully non-stationary random @sed- (t) is defined by the one-sided

EPSDfunction that can be expressed, in the Priestiegresentation, as the product between
the modulating function and the one-sided PSD fancof the “embedded” stationary
counterpart:

G (tw) =|a(@t)] G™ (w), w=20; G tw) 0, w< C (17)
where G;™ (w) is the spectrum compatible one-sid8Dfunction at thg-th iteration.

Following the iterative procedure the spectrum-catiife PSD functionG; “(«) of the

stationary counterpart of the fully non-stationprgcessU (t) is obtained and compared (in
logarithmic scale) in Figure 1b with the PSEﬁT(w) under the hypothesis of stationary
spectrum-compatible process.
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Figure 1: a) Comparison between the selected E@8ttpseudo-acceleration spectrum (black line)thad
average of 1000 pseudo-acceleration spectra frell b) Spectrum-compatible PSDs. Stationary assamp
(black line) and stationary counterpart in theyfulbn-stationary assumption (red line).

Once the EPSD function of the spectrum-compatihbiky fnon-stationary process is
evaluated, a set of 1000 artificial spectrum-conipeatfully non-stationary time histories,
with durationt, =35s, are generated by Monte Carlo Simulation. In ordewerify the

accuracy of the described procedure, in Figure tha) EC8' target pseudo-acceleration
response spectrum with the average pseudo-acdeferasponse spectrum derived by the
1000 artificial accelerograms are compared.

4.2 Closed form solutionsfor the TFR vector function

After some algebra it can be proved that for thar®s and Solomdsmodel, whose the
time-frequency modulating functiora(w,t) is given in EQ.(16), thdFR vector function

Yp(a),t), of the quiescent structural system in modal sabtespforced by the function

f(wt)=exp(iwt)a@,.t), can be evaluated as:

Y, (wt) = —&(w)exp(-B(w)t) P Y(w) +t1,, [ Y(w) WTA w U(t) (18)

1

whereB(w) = a(w) -iw, and Y(w)is a diagonal matrix defined a8(w) =[ T+B(w)!,,, |
whosej-th element isy, (a)) ::I/[yj +,8(a))], being y; thej-th element of diagonal matrix

I'. Finally, substitutingY, (wt) into Eq.(13) and the resul¥, (wt), into Eq.(8) the explicit

closed form solution of thEPSDfunction matrix of the nodal response, in statealde sis
obtained.

4.3 Numerical results

In this section in order to verify the accuracytlé proposed procedure the benchmark
quiescent linear MDOFs is analysed; this frameéhasiform story heighH =320 cm and a
bay width L =600 cr, as shown in Figure 2a). The steel columns areentddEuropean
HE340Awide flange beams with moment of inertia alongstreng axisl = 27690 cm. The
steel material is modelled as linear elastic withuig’s modulus = 200 GP< The beams
are considered rigid to enforce a typical shealding behaviour. Under this assumptions, the
shear-frame is modelled as a three OiDE&ar system. The frame described above is assumed
to be part of a building structure with a distabetween framed, =600 cm. The tributary

mass per storyM, is obtained assuming a distributed gravity load cp=8 kN/m?,
accounting for the structure’s own weight, as veallfor permanent and live loads, and it is
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equal toM =28800 k¢. The modal periods of the linear elastic undamgleehr-frame are
T,=0.376 s,T,= 0.134 s an@,= 0.09, with corresponding effective modal mass ratios
of 91.41%, 7.45% and 1.10 respectively. The structure presents viscous denpé
coefficientc = 200 KN s/ across the second and third stories and a propattdamper of
coefficient nc across the first story. Whem=1 the structure is classically damped. The

elements out of the diagonal can be considered m®asure of the non-classicity of the
system. A method to define this value requestritreduction of the “coupling indeX™

pzmax[Esj/(EiiE”)] (ij=12..n) izj] &p<: (19)

As shown in Figure 2b), whern =1 the coefficient p=0 and the frame is classically
damped.

N 1

H=320m 8
0.8
H=320m 0.6
a 4

A2 a) 0.4 b)
H=320m |
0.2
W7 200 kNs/m 27 07

T T T T
Columns: HE340A 0 5 10 15 20 25
L=6.00m Beams:  rigid n

Figure 2: a) Geometric configuration of benchmdureé-storey one-bay shear-type frame; b) Couplidgx

The benchmark structural model undergoes to a astichearthquake base excitation,
modelled by a zero mean Gaussian spectrum-com@diitlly non-stationary process, as
explained in section 4.1. The following figures whithe time histories of the mean frequency,
the central frequency and the bandwidth paraméténeothird floor for n =1, n =10 and
n =25 evaluated by the proposed analytical approachcangpared with the ones obtained

by Monte Carlo Simulation00C samples of input).
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Figure 3: Comparison between the time-variant hissoof a) the mean frequencﬁz (t) b) the central

frequencyw, , (t) and c) the bandwidth parametdy (t), of the third relative to ground floor displacerhesy
applying the proposed analytical solution and trend Carlo Simulation.

5 CONCLUDING REMARKS

In the framework of stochastic dynamics, in oraepérform the safety of structural systems
subjected to fully non-stationary input proces® #pectral characteristics of the structural
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response play a fundamental role. These quantiégsire the evaluation of the NGSMs,
which depend on th&FR vector function. The main purposes of this papeoievaluate in
explicit closed form thelTFR vector function of linear non-classically dampedustural
systems undefully non-stationary excitatignthe effectiveness of the proposed approach is
verified thanks to the comparison with Monte C&lmulation results.
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