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Abstract. The probabilistic analysis of structural systems subjected to seismic excitations 
requires the spectral characterization of both the input excitation and the structural response. 
Moreover, in order to reproduce the typical characteristics of real earthquakes ground-
motion time history, the seismic excitation should be modelled as a fully non-stationary 
stochastic process. In the framework of stochastic structural analysis, the time-frequency 
varying response function (TFR) plays a central role in the evaluation of the statistics of the 
response of linear structural systems subjected to non-separable stochastic excitations. 
In this paper a method to evaluate in explicit closed-form TFR functions of linear non-
classically damped structural systems under fully non-stationary excitation is proposed.  

1 INTRODUCTION  

One of the most important problem in seismic engineering is the correct characterization of 
the ground motion acceleration. In code-based seismic design and assessment it is often 
allowed the use of real records as an input for nonlinear dynamic analysis but, due to the 
difficulty in rationally relating the ground motions to the hazard at the site and the required 
selection criteria, the use of artificial spectrum-compatible accelerograms is preferred. 
Usually the stationary Gaussian stochastic model is adopted although the corresponding 
artificial accelerograms have an excessive number of cycles of strong motion and 
consequently they possess unreasonably high energy content1. Furthermore, the stationary 
model suffers the major drawback of neglecting the non-stationary characteristics of the real 
records: the changes in amplitude and frequency content. Indeed, the time-varying amplitude 
is due to the natural evolution of the earthquake ground motion, while the time-varying 
frequency content is prevalently due to different arrival times of the primary, secondary and 
surface waves that propagate at different velocities through the earth crust. The stochastic 
processes involving both the amplitude and the frequency changes are referred in literature as 
fully non-stationary random processes while the so-called quasi-stationary (or uniformly 
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modulated) random processes present changes in amplitude only. In order to define the fully 
non-stationary stochastic input, the Priestley2 spectral representation of non-stationary 
processes is the most adopted. In the Priestley model the Evolutionary Power Spectral 
Density (EPSD) function is introduced2.  

In the framework of stochastic structural analysis, the time-frequency varying response 
(TFR) function plays a central role in the evaluation of the statistics of the response of linear 
structural systems subjected to fully non-stationary stochastic excitations3-7. 

In the proposed approach, the main steps for the evaluation of the statistics of the response 
are: i) the evaluation of complex eigenproperties of the non-classically damped system; ii) the 
use of the state-variables to evaluate in explicit closed-form the TFR vector function of the 
structural response; iii) the evaluation in closed form of the EPSD matrix function of the 
response; iv) the definition of the non-geometrical spectral moments (NGSMs), in the time 
domain, as element of the pre-envelope covariance matrix4,8; v) the validation of the proposed 
procedure by the Monte Carlo Simulation. 

2 EQUATIONS OF MOTION 

Let consider the equation of motion of a linear quiescent n-degree-of-freedom (n-DOF) 
non-classically damped structural system whose dynamic behavior is governed by the 
following equation of motion:  

  ( ) ( ) ( ) ( )t t t F t+ + = −M u Cu Ku M τɺɺ ɺ         (1) 

where M, C, and K are the ( )×n n  mass, damping, and stiffness matrices of the structure; u(t) 

is the( )×1n vector of displacements, having for i-th element ( )iu t  and a dot over a variable 

denotes differentiation with respect to time;τ  is the influence vector and ( )F t  is the ground 
acceleration. It has been recognized that, from a computational point of view, to operate in the 
modal subspace is more convenient than in the nodal space, for non-classically damped 
structures too. To this aim let introduce the modal coordinate transformation ( ) ( )t t=u qΦ , 

where 1 2 ... m =  Φ φ φ φ  is the modal matrix, of order ×n m, collecting the m 

eigenvectors jφ , normalized with respect to the mass matrix M , solutions of the 

eigenproblem 1 2− −=K M Φ Φ Ω  with the orthogonality condition T
m=Φ M Φ I . The 

diagonal matrix Ω  collects the undamped natural circular frequency jω  and mI  is the identity 

matrix of order m. Once the modal matrix Φ  is evaluated, by applying the coordinate 
transformations to Eq.(1), the following set of the first order differential equation can be 
written in the 2m- state vector variable as7: 

 ( ) ( ) ( )= +t t F ty D y wɺ            (2) 

where 

 ( ) ( )
( ) 2; ;mt

t
t

     = = =     − −    

q 0 I 0
y D w

q Ω Ξ pɺ
       (3) 

In the latter equations ( )ty  is the vector of modal state variables; T= −p M τΦ  is the 

vector of participation factor and T=Ξ Φ C Φ  is the generalized damping matrix which for 
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non-classically damped systems is not a diagonal matrix. Therefore, the nodal response in 
state variables can be determined by the following back substitution: 

 ( ) ( )
( )

( )
( ) ( )t t

t t
t t

    
= = =    

    

u qΦ 0
z Π y

u q0 Φ ɺɺ
       (4) 

In order to decouple Eq.(2) a further coordinate transformation must be introduced, that is 

( ) ( )t t=y Ψx , where * * *
1 2 1 2... ...m m =  Ψ ψ ψ ψ ψ ψ ψ  is a complex matrix, of 

order 2 ×2m m, collecting the 2m complex eigenvectors, jψ , solutions of the eigenproblem 

=D Ψ Ψ Γ  with the orthogonality condition 2
T

mΨ A Ψ I= . The asterisk over a variable 

denotes complex conjugate quantity and Γ  is a diagonal complex matrix listing the 2m 
eigenvalue of the non-classically damped system. Once the complex matrix Ψ  is evaluated, 
by applying the new coordinate transformations to Eq.(2), the following set of 2m decoupled 
first order differential equations is obtained: 

 ( ) ( ) ( ); (0) ; mT

m

t t F t
 

= + =  
 

Ξ I
x Γx Ψ A w x 0 A

I 0
ɺ =       (5) 

where ( )tx  is complex vector of order 2m. Finally the nodal response can be evaluated as: 

 ( ) ( )t t=z ΠΨx          (6) 

3 CLOSED-FORM SOLUTION FOR THE TIME-FREQUENCY VARYING 
RESPONSE FUNCTION 

The TFR function vector plays a central role in the evaluation of the statistics of the 
response of linear structural systems subjected to both separable or non-separable stochastic 
excitations. In fact, by means of this function, it is possible to evaluate in explicit form the 
EPSD function matrix of the response and consequently the non-geometric spectral moments, 
which are required in the prediction of the safety of structural systems subjected to non-
stationary random excitations. 

By means of the modal transformation Eq.(4), the one-sided EPSD function matrix of the 
nodal response, in state variables, can be evaluated, after very simple algebra, as follows: 

 1 2 1 2( , , ) ( , , ) .Tt t t tω ω=z z y yG ΠG Π          (7) 

where the EPSD function matrix of the modal response, in state variables, 1 2( , , )t tωy yG , is 

given as: 

    ( ) ( )*
1 2 0 1 2( , , ) ( ) , ,Tt t G t tω ω ω ω=y yG Y Y        (8) 

with 0( )G ω  is the embedded one-sided power spectral density (PSD) function of the 

stationary counterpart of the input process ( )F t . 

The function vector ( ),tωY  is the so-called TFR function vector of the modal response, in 

state variables. The vector ( ),tωY  can be evaluated as the solution of the following set of 2m 

first order differential equation7: 
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 ( ) ( ) ( ) ( ) ( )0 0, = , + , ;      , t =t t t tfω ω ω ωY DY w Y Yɺ U         (9) 

subjected to pseudo-force ( )( , ) exp i ( , )f t t a tω ω ω= − . In the previous equation ( )tU  is the 

Unit Step function. Since the following coordinate transformation holds: 

 ( , ) ( , )t tω ω=Y ΨX        (10) 

it follows that the first order differential equation (9) can be rewritten as a set of 2m decoupled 
firs order differential equations: 

 ( ) 0 0 0( , ) ( , ) ( , ) ;      ( , )=T Tt t f t t tω ω ω ω= + ≡X ΓX Ψ A w X X Ψ A Yɺ U    (11) 

This equation represents the differential equation of motion, in state variable, of a 
quiescent dynamical system at time t=0, subjected to a pseudo-force ( , ).f tω  If the particular 

solution of Eq.(11), ( )p ,tωX , can be determined in explicit form, the TFR vector function can 

be written as9: 

( ) ( ) ( ) ( ){ } ( )p 0 p, , exp ,0t t t tω ω ω = + − X X Γ X X U      (12) 

Then, according to Eq.(10), the solution of Eq.(9) can be written as:  

 
( ) ( ) ( ) ( ) ( ){ } ( )

( ) ( ) ( ){ } ( )
p 0 p

p 0 p

, , , exp ,0

                             , ,0

t t t t t

t t t

ω ω ω ω

ω ω

 = = + − 

 = − − 

Y Ψ X Ψ X Γ X X

Y Θ Y Y

U

U

    (13) 

where ( )tΘ  is the transition matrix in modal subspace defined as: 

 ( ) ( )exp Tt t=Θ Ψ Γ Ψ A        (14) 

The analytical expression of the particular solution vector ( )p p, ( , )t tω ω=Y ΨX , can be 

easily obtained in closed form for the most common models of modulating function ( , )a tω  
proposed in literature7. 

In the framework of non-stationary analysis of structures, time-dependent parameters, very 
useful in describing the time-variant spectral properties of the stochastic process, are: i) the 
mean frequency, ( )X tν + , which evaluates the variation in time of the mean up-crossing rate of 

the time axis, ii) the central frequency, ( )C,X tω , which scrutinizes the variation of the 

frequency content of the stochastic process with respect to time and iii) the bandwidth 
parameter ( )X tδ . The three functions introduced before can be evaluated as a function of 

NGSMs and have been defined, respectively, as6: 

( ) ( ) { } ( ) { }2

1, 1,2,
C,

0, 0, 0, 2,

Re ( ) Re ( )( )1
; ; 1

2π ( ) ( ) ( ) ( )
r r r rr r

r r r

r r r r r r r r

u u u uu u
u u u

u u u u u u u u

t tt
t t t

t t t t

λ λλ
ν ω δ

λ λ λ λ
+ = = = −  (15) 

where the functions 0, ( )
r ru u tλ  and 2, ( )

r ru u tλ  are real ones while 1, ( )
r ru u tλ  is a complex 

function. These functions are the so-called NGSMs3,4,6,8.  
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4 NUMERICAL APPLICATION 

4.1 Generation of response spectrum compatible artificial fully non-stationary 
earthquake accelerograms 

The first aim of this section is to obtain fully non-stationary artificial earthquakes that are 
spectrum compatible and able to reproduce the main features of real recorded time histories; it 
is important to notice that the comparison with only one result cannot be relevant, so it is 
necessary to select a set of real recorded earthquakes in order to perform a statistical analysis. 

The chosen database is the “PEER: Pacific Earthquake Engineering Research Center: NGA 
Database”; 30 recorded accelerograms have been selected to perform the statistical analysis. 
In particular, all of them are time histories of seismic events that happened in the Imperial 
Valley (California)10. Since all the events have a magnitude superior than 5.5 and according to 
the EC8 instructions11 a spectrum of type 1 (see Figure 1a) is chosen as target spectrum. The 
peak ground acceleration (PGA) is assumed equal to the average of the peak ground 
acceleration of the recorded events 22.483 m / sga =  and, for the type “C” of soil, the 

parameters 1.15S= , 0.2sBT = , 0.6sCT =  and 2.0sDT =  are selected. 

An efficient method to generate stationary artificial spectrum compatible accelerograms 
was established by Cacciola et al12; the main problem is that the stationary model of the 
ground motion acceleration process is unable to catch the characteristics of real earthquakes, 
such as the amplitude and frequency modulation of the signal; then the energy of the artificial 
time history is proportional to the duration of the process itself. So, mathematically speaking, 
stationary samples have infinite energy. A modified method10, that is able to generate artificial 
spectrum compatible earthquakes, for fully non-stationary (when both time and frequency 
content change) random processes, is herein used, by applying the procedure proposed by 
Cacciola13. Thanks’ to this iterative method it is possible to obtain the one-sided PSD function 
of the so-called “embedded” stationary counterpart process, 0 (ω)G . Furthermore in order to 

take into account the main features of seismic ground motion, that is the “build-up” and the 
“die off” segments as well as a decreasing dominant frequency, Spanos and Solomos14 
proposed the following time-frequency modulating function ( )a tω, : 

 ( ) ( )( ) ( )( ) expa t t t tω, ε ω α ω= − U   (16) 

where the functions ( )ε ω  and ( )α ω  should be defined analyzing the recorded 

accelerograms. The fully non-stationary random process ( )F t  is defined by the one-sided 

EPSD function that can be expressed, in the Priestley2 representation, as the product between 
the modulating function and the one-sided PSD function of the “embedded” stationary 
counterpart: 

 ( ) ( ) ( )2 STC,
0, , ,       0; ( , ) 0,     0.j

FF FFG t a t G G tω ω ω ω ω ω= ≥ = <   (17) 

where ( )STC,
0

jG ω  is the spectrum compatible one-sided PSD function at the j-th iteration. 

Following the iterative procedure the spectrum-compatible PSD function 
g

STC( )
U

G ωɺɺ  of the 

stationary counterpart of the fully non-stationary process ( )gU tɺɺ  is obtained and compared (in 

logarithmic scale) in Figure 1b with the PSD 
g

ST( )
U

G ωɺɺ  under the hypothesis of stationary 

spectrum-compatible process.  
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Figure 1: a) Comparison between the selected EC8 target pseudo-acceleration spectrum (black line) and the 
average of 1000 pseudo-acceleration spectra (red line); b) Spectrum-compatible PSDs. Stationary assumption 

(black line) and stationary counterpart in the fully non-stationary assumption (red line).   

Once the EPSD function of the spectrum-compatible fully non-stationary process is 
evaluated, a set of 1000 artificial spectrum-compatible fully non-stationary time histories, 
with duration 35 sdt = , are generated by Monte Carlo Simulation. In order to verify the 

accuracy of the described procedure, in Figure 1a) the EC811 target pseudo-acceleration 
response spectrum with the average pseudo-acceleration response spectrum derived by the 
1000 artificial accelerograms are compared. 

4.2 Closed form solutions for the TFR vector function 

After some algebra it can be proved that for the Spanos and Solomos12 model, whose the 
time-frequency modulating function, ( )a tω,  is given in Eq.(16), the TFR vector function, 

( )p ,tωY , of the quiescent structural system in modal subspace, forced by the function 

( )( , ) exp i ( , )f t t a tω ω ω= ,  can be evaluated as:  

 ( ) ( ) ( )( ) ( ) ( ) ( )p 2, exp T
mt t t tω ε ω β ω ω ω= − − +  Y A w UΨ ϒ Ι ϒ Ψ    (18) 

where ( ) ( ) iβ ω α ω ω= − , and ( )ωϒ is a diagonal matrix defined as ( ) ( ) 1

2+ mω β ω −
=   Γ Iϒ  

whose j-th element is  ( ) ( )1j jυ ω γ β ω = +  , being jγ  the j-th element of diagonal matrix 

Γ . Finally, substituting ( )p ,tωY  into Eq.(13) and the result, ( ),tωY , into Eq.(8) the explicit 

closed form solution of the EPSD function matrix of the nodal response, in state variable sis 
obtained.  

4.3 Numerical results 

In this section in order to verify the accuracy of the proposed procedure the benchmark 
quiescent linear MDOFs is analysed; this frame has a uniform story height 320 cmH =  and a 
bay width 600 cmL = , as shown in Figure 2a). The steel columns are made of European 
HE340A wide flange beams with moment of inertia along the strong axis 427690 cmI = . The 
steel material is modelled as linear elastic with Young’s modulus  200 GPaE = . The beams 
are considered rigid to enforce a typical shear building behaviour. Under this assumptions, the 
shear-frame is modelled as a three DOF linear system. The frame described above is assumed 
to be part of a building structure with a distance between frames 0 600 cmL = . The tributary 

mass per story, M, is obtained assuming a distributed gravity load of 28 kN/mq = , 
accounting for the structure’s own weight, as well as for permanent and live loads, and it is 

a) b) 
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equal to  = 28800 kgM . The modal periods of the linear elastic undamped shear-frame are 

1 2 30.376 s, 0.134 s  and 0.093 sT T T= = = , with corresponding effective modal mass ratios 

of 91.41%,  7.45% and 1.10% respectively. The structure presents viscous dampers of 
coefficient   200 kNs/mc =  across the second and third stories and a proportional damper of 
coefficient cη   across the first story. When 1η =  the structure is classically damped. The 
elements out of the diagonal can be considered as a measure of the non-classicity of the 
system. A method to define this value request the introduction of the “coupling index”15: 

 ( ) ( )2
, , ,max , 1,2, , 0 1i j i i j j i j n i jρ ρ = Ξ Ξ Ξ = ≠ ≤ <  …   (19) 

As shown in Figure 2b), when 1η =  the coefficient 0ρ =  and the frame is classically 
damped. 
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Figure 2: a) Geometric configuration of benchmark three-storey one-bay shear-type frame; b) Coupling index 

The benchmark structural model undergoes to a stochastic earthquake base excitation, 
modelled by a zero mean Gaussian spectrum-compatible fully non-stationary process, as 
explained in section 4.1. The following figures show the time histories of the mean frequency, 
the central frequency and the bandwidth parameter of the third floor for  1η = , 10η =  and 

25η =  evaluated by the proposed analytical approach and compared with the ones obtained 
by Monte Carlo Simulation (1000 samples of input).  
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Figure 3: Comparison between the time-variant histories of a) the mean frequency ( )
3u tν + b) the central 

frequency ( )
3C,u tω  and c) the bandwidth parameter ( )

3u tδ , of the third relative to ground floor displacement, by 

applying the proposed analytical solution and the Monte Carlo Simulation.  

5 CONCLUDING REMARKS  

In the framework of stochastic dynamics, in order to perform the safety of structural systems 
subjected to fully non-stationary input process, the spectral characteristics of the structural 

 
a) b) 

a) b) c) 
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response play a fundamental role. These quantities require the evaluation of the NGSMs, 
which depend on the TFR vector function. The main purposes of this paper is to evaluate in 
explicit closed form the TFR vector function of linear non-classically damped structural 
systems under fully non-stationary excitation; the effectiveness of the proposed approach is 
verified thanks to the comparison with Monte Carlo Simulation results.  
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