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Abstract. Nonlinear dynamic mathematical models of therapy processes against such 
cancer diseases as glioma and leukemia are considered. Negative effect of a therapeutic 
agent onto both malignant and benign cells is taken into account by using therapy functions. 
They depend on a time-varying concentration of a therapeutic agent and can be monotonic or 
nonmonotonic. In the deterministic case, laws of such dependencies are fixed. However, from 
the biomedical point of view, these laws are not precisely known and can be affected by 
individual characteristics of patients, cancer sub-types, drug agents, etc. Thus, it is 
reasonable to take stochastic uncertainties into account there. We propose an approach that 
accounts for stochastic uncertainties in the deterministic biomedical models. Moreover, 
influence of these uncertainties is demonstrated within the framework of Viability Theory. 

1 INTRODUCTION 

Since cancer is one of the main causes of death, dynamic modeling of cancer cells' 
evolution and therapy planning is a promising field of Mathematical Biology¹. Cancer 
progression (or regression) is estimated under various treatments such as chemotherapy, 
immune therapy, radiotherapy, etc., while choosing suitable dosages, durations and 
frequencies. In this paper, we consider nonlinear dynamic mathematical models of therapy 
processes for treating glioma and acute leukemia. 

Glioma is a broad category of brain cancers that come from so-called glial cells². It is 
characterized by a very high rate of penetration into surrounding tissues. Therefore, it often 
becomes almost impossible to separate malignant and healthy brain areas. Furthermore, some 
of the malignant cells can acquire drug resistant properties. 
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From the biomedical point of view, it is reasonable to introduce an upper limit restriction 
on the total number of malignant cells and a lower limit restriction on the total number of 
healthy cells at every instant of the observed time interval. This leads to state constraints in a 
controlled dynamic system (a control function usually represents amounts of a therapeutic 
agent applied to a patient at different time instants). Violations of such constraints mean in 
reality reaching critical near death conditions. Hence, there arises the problem to find a 
therapy strategy that provides maximum viability (survival) time without violating the 
imposed restrictions3. Note that such a problem statement is partially influenced by Viability 
Theory4. Even though, for modeling therapy of such terminal diseases as glioma, viability 
problems seem to be more natural than unconstrained dynamic optimization5–7, their 
investigation often appears to be more complicated. 

Leukemia is a cancer disease starting in the bone marrow and resulting in high numbers of 
abnormal white-blood cells also called leukemic cells. We are interested in modeling its 
rapidly progressive form called acute leukemia8. This is in principle a curable disease as 
opposed to glioma. Therefore, it is reasonable to estimate therapy quality by a suitable scalar 
criterion, rather than by using viability constraints6, 9. 

In the models of this paper, the fact that a therapeutic agent affects both type of cells 
negatively is taken into account by using so-called therapy functions. They depend on a time-
varying concentration of a therapeutic agent and can be monotonic or nonmonotonic. The 
nonmonotonicity is usually related to existence of a threshold value after which efficiency of 
therapy decreases. In the deterministic case, laws of such dependencies are fixed. However, in 
biomedical practice, these laws are not precisely known and can be affected by individual 
characteristics of patients, cancer sub-types, drug agents, etc. Thus, it is reasonable to take 
stochastic uncertainties into account there. We propose an approach to develop a stochastic 
extension to the mentioned models of glioma and leukemia therapy. It can also be applied to 
dynamic models describing therapy of other cancer types. Moreover, we present the results of 
numerical simulations demonstrating influence of stochastic uncertainties with different noise 
intensities or the level of uncertainties. 

2 PROBLEM STATEMENT 

First, let us introduce deterministic models of glioma and leukemia therapy. 
For the glioma model, the following state variables are considered: 
• C is the quantity of brain tumour (glial) cells; 
• N is the quantity of normal cells; 
• h is the concentration of a chemotherapeutic agent; 
• g is the concentration of nutrients (oxygen, glucose, etc.). 

Furthermore, the time variable is denoted by t, and amounts of the applied chemotherapeutic 
agent are represented by a function u = u(t) which is also interpreted as an open-loop control 
strategy. Then dynamics of the state variables is described by the system of ordinary 
differential equations 



A. Bratus, I. Yegorov, and D. Yurchenko 

Meccanica dei Materiali e delle Strutture |  VI (2016), 1, PP.131-138  133 
 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( )























≤≤≤≤

−

−

−−














−














∞

∞

T,tR,tu

,g=g,α+tgγ=
dt

tdg

,h=h,tutg+thγ=
dt

tdh

,N=N,tNthfk
tC+l

tNtC
l

tN

N
tNtgr=

dt

tdN

,C=C,tCthfk
tC

C
tCtgr=

dt

tdC

gg

h

00

0

0

0ln

0ln

0

0

02
2

12

011

 

 

 

 

(1) 

where r1, r2, C∞, N∞, k1, k2, γh, γg, αg, R are positive constants, l1, l2 are nonnegative constants, 
and T > 0 is a time horizon. Here the growth terms for glial and normal cells are Gompertzian 
with replication rates r1, r2 and limiting capacities C∞, N∞, while l1, l2 specify the rates and 
half-saturation constant in the term representing negative influence of glial cells on normal 
cells. Parameters γg and αg describe degradation and constant positive flux of nutrients. 
Dissipation of the chemotherapeutic agent is determined by γg, and its delivery rate is 
proportional to the concentration of  nutrients (as well as the growth terms in the first two 
equations). There are also natural pointwise constraints on the function u = u(t) (since the 
drug cannot be physically delivered with an arbitrarily high rate). Moreover, negative 
influence of chemotherapy on both glial and normal cells is represented by the factors k1 f(h) 
and k2 f(h), where k1 > k2 (the drug affects diseased cells stronger that normal ones) and f(h) is 
a so-called therapy function. As was discussed in the introduction, the latter can be strictly 
increasing or having a threshold effect. For model (1), let us choose a monotonic therapy 
function3 

f (h )= h
κ+h

, κ>0 .
 

(2) 

Note that, as opposed to the model of Bratus et al. (2015)3, system (1) includes  the 
concentration of nutrients, which is more reasonable from the biomedical point of view. 

For the model of acute leukemia, we consider such variables as the quantity of leukemic 
cells L,  quantity of normal cells N, and chemotherapeutic agent concentration h. There is no 
any variable similar to the nutrient concentration g from the glioma model. The corresponding 
equations take the form6, 9 
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(3) 

where the constants can be described similarly to the previous model. However, negative 
influence of diseased cells on normal cells becomes somewhat different. Now we take a 
nonmonotonic therapy function9: 
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( ) 0.>β,he=hf hβ−  (4) 

For model (1), viability constraints (discussed in the introduction) can be written as 

( ) ( ) .0ˆˆ Tt,NtN,CtC ≤≤≥≤  (5) 

The control goal is to keep the system in the viability (survival) domain as long as possible. 
For model (3), the highest control (therapy) quality corresponds to the minimum of the 

integral functional 
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with a constant NH specifying a sufficiently healthy amount of normal cells. Such an 
additional policy function represents the goal not to reduce the amount of normal cells much 
lower than the suitable level NH (low amounts of normal cells can also lead to death). 

For the sake of convenience, some of the parameters appearing in models (1) and (3) have 
the same notations, but this does not mean their equality. Each of the models has its own 
independent parameters. Our aim is to build suitable stochastic extensions of deterministic 
models (1) and (3). 

3 STOCHASTIC EXTENSION 

One way of including stochastic uncertainties in model (1) is to replace the deterministic 
equation for the therapeutic agent with the stochastic equation 

( ) ( ) ( ) ( ) ( ),tσdwtutg+dtthγ=tdh h−  (8) 

where w(t), t ≥ 0, is a one-dimensional standard Brownian motion, and constant σ > 0 is the 
noise intensity. For model (3), a similar modification can be made. Such a type of stochastic 
noise is often considered in mechanical systems and called internal10. In our biomedical 
systems, it describes uncertainty in drug delivery, because it is not known how much drug is 
actually delivered in different patients with different cancer’s sub-types, especially in the case 
of glioma. 

However, it is more interesting to consider uncertainty in laws specifying negative 
influence of a drug on diseased and normal cells. For this purpose, introduce a stationary 
Gaussian stochastic process y(t), t ≥ 0, with mean 1 and covariance function 

( )( ) ( )( )[ ] | |( ).exp11 2 stkσ=sytyE −−−−  (9) 

One can easily verify that it satisfies the stochastic equation 

( ) ( )( ) ( ).21 tdwkσ+dttyk=tdy −−  (10) 

Such a process is used in stochastic aerospace models11. Our approach is to include y(t) in the 
equations for diseased and normal cells as a factor near the therapy functions. This indeed 
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leads to random vibrations of actual therapy effects around theoretical deterministic laws (2) 
and (4). Thereby, model (1) is transformed into 
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(11) 

and model (3) is modified as 
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(12) 

It is also convenient to make the change of variables 

( ) ( )( ) ( ) ( ))(/ln/ln tNN=tn,tCC=tc
∞∞  (13) 

in model (1) so as to write the first two equations in a simpler form: 
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Similarly, in model (3), the change of variables 

( ) ( )( ) ( ) ( ))(/ln/ln tNN=tn,tLL=tl
∞∞  (15) 

leads to the new first and second dynamic equations 
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4 NUMERICAL SIMULATIONS 

In fact, our models are stated already in a form with dimensionless state and time 
variables3, 6–9. This is reasonable, since the key objective of such simplified mathematical 
models is to obtain only general qualitative results. They cannot serve for making accurate 
quantitative predictions because of tremendous complexity of real biological systems. 
However, we choose parameter values so that t can informally be interpreted as time in 
months. 

For the glioma model, we choose the following parameters’ values (which conform with 
the relevant orders of magnitude introduced by Bratus et al. (2015)3): 

r1= 0.02, r2= 0. 012, lnC∞= ln N∞= 19, k1= 4, k2= 1, l1= 0.1, l2= 4∗107 , κ= 1,

α
g
= 0. 425, γ

g
= 0.04, γ

h
= 0.15, k=0.05, Ĉ= 4∗107 , N̂ = 5∗107 , R=0. 0075,

T= 30, C0= 107 , N 0= 108, g0= 12, h0= 0, y0= 1.  

 

(17) 

Let us consider two deterministic open-loop therapy strategies as shown in Fig. 1. Both of 
them keep the deterministic system viable on the whole interval [0, T]. They also consume 
equal drug amounts. Influence of stochastic noise on the state trajectories as well as on the 
mean viability times is illustrated in Fig. 2.  

For the leukemia model, we take 

r1=r2= 0.1, γ l =γn= 0.04, γh= 0.4, β=0. 01, k1= 2.5, k2= 1. 4, c=10− 10 ,

L∞=N∞= 1010, k=0.05, N
H

= 7. 5∗107 , α=10, R=1,

T=10, L0= 1.8∗108 , N 0= 108, h0= 0, y0= 1  

 

(18) 

(in compliance with the relevant orders of magnitude given by Bratus et al. (2012)9, Bratus et 
al. (2013)5) and consider the deterministic open-loop therapy strategy indicated in Fig. 3. 
Dependence of the mean values 
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and functional (6) (opposite to mean therapy quality) on the noise intensity is shown in Fig. 4. 
From Fig. 2 and 4, one can see that, as the noise intensity increases, the mean viability time 

in the glioma model decreases, and functional (6) in the leukemia model increases. Thus, 
stronger uncertainty implies lower mean therapy quality and this dependence is nonlinear. In 
the leukemia model, the mean therapy quality decreases much faster for greater uncertainties. 

 

  

 

 

 

 

 

Figure 1:Deterministic therapy strategies u1(t) and u2(t) in the glioma model. 
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Figure 2: Glioma model. Left: Perturbation of the deterministic state trajectory under therapy strategy u1(t) by 
stochastic noise with intensity σ = 0.2. Right: Mean viability times for therapy strategies u1(t) and u2(t) 
depending on noise intensity σ. 

 

 
 
 
 
 
 
 

Figure 3: Deterministic therapy strategy u(t) in the leukemia model. 

 

 

Figure 4: Leukemia model. Left: Mean values (19) depending on noise intensity σ. Right: Functional (6) 
(opposite to mean therapy quality) depending on noise intensity σ. 

Note that stochastic uncertainties in our models are external according to the terminology 
of Bratus et al. (2016)10. Hence, our results conform with the property that stronger external 
uncertainties should decrease mean control quality10. This also leads to the hypothesis that 
these uncertainties may cause significant changes in the structures of optimal control 
strategies. 
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Furthermore, Fig. 2 indicates that, in the glioma model with a sufficiently small 
uncertainties, control u1(t) leads to a greater viability time than control u2(t) with 
consecutively decreasing dosages. For stronger noise, the results become almost the same. 

 CONCLUSION 

In this paper, we proposed an approach to develop stochastic extensions of deterministic 
dynamic models arising in Biomedical Sciences. Two specific nonlinear models concerning 
glioma and leukemia therapy were formulated and then extended to the stochastic case by 
using the proposed approach. We also performed numerical simulations in order to obtain 
how the included stochastic uncertainties affect dynamics of the systems and, in particular, 
how much viability (survival) times or other criteria of therapy quality decrease with 
increasing uncertainties. For a future work, it is worth investigating to characterize influence 
of stochastic uncertainties on solutions to dynamic optimization problems for such biomedical 
models. 
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