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Abstract. Nonlinear dynamic mathematical models of therapy processes against such
cancer diseases as glioma and leukemia are considered. Negative effect of a therapeutic
agent onto both malignant and benign cells is taken into account by using therapy functions.
They depend on a time-varying concentration of a therapeutic agent and can be monotonic or
nonmonotonic. In the deterministic case, laws of such dependencies are fixed. However, from
the biomedical point of view, these laws are not precisely known and can be affected by
individual characteristics of patients, cancer sub-types, drug agents, etc. Thus, it is
reasonable to take stochastic uncertainties into account there. We propose an approach that
accounts for stochastic uncertainties in the deterministic biomedical models. Moreover,
influence of these uncertainties is demonstrated within the framework of Viability Theory.

1 INTRODUCTION

Since cancer is one of the main causes of deatmandig modeling of cancer cells'
evolution and therapy planning is a promising fi@tl Mathematical Biology*. Cancer
progression (or regression) is estimated underowuaritreatments such as chemotherapy,
immune therapy, radiotherapy, etc., while choosmgtable dosages, durations and
frequencies. In this paper, we consider nonlingarachic mathematical models of therapy
processes for treating glioma and acute leukemia.

Glioma is a broad category of brain cancers thanecdrom so-called glial cells2. It is
characterized by a very high rate of penetratida surrounding tissues. Therefore, it often
becomes almost impossible to separate malignanhealthy brain areas. Furthermore, some
of the malignant cells can acquire drug resistaoperties.
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From the biomedical point of view, it is reasonatd@ntroduce an upper limit restriction
on the total number of malignant cells and a loWait restriction on the total number of
healthy cells at every instant of the observed timerval. This leads to state constraints in a
controlled dynamic system (a control function usuat¢presents amounts of a therapeutic
agent applied to a patient at different time inttarVviolations of such constraints mean in
reality reaching critical near death conditions.ne® there arises the problem to find a
therapy strategy that provides maximum viabilityir¢gval) time without violating the
imposed restrictiors Note that such a problem statement is partialfiuénced by Viability
Theory. Even though, for modeling therapy of such terthifiaeases as glioma, viability
problems seem to be more natural than unconstraihethmic optimization’, their
investigation often appears to be more complicated.

Leukemia is a cancer disease starting in the bareonr and resulting in high numbers of
abnormal white-blood cells also called leukemiclscelWe are interested in modeling its
rapidly progressive form called acute leukeéighis is in principle a curable disease as
opposed to glioma. Therefore, it is reasonablestonate therapy quality by a suitable scalar
criterion, rather than by using viability constriai®.

In the models of this paper, the fact that a theméip agent affects both type of cells
negatively is taken into account by using so-callestapy functions. They depend on a time-
varying concentration of a therapeutic agent am & monotonic or nonmonotonic. The
nonmonotonicity is usually related to existencedhreshold value after which efficiency of
therapy decreases. In the deterministic case, ¢hwsch dependencies are fixed. However, in
biomedical practice, these laws are not preciselgw and can be affected by individual
characteristics of patients, cancer sub-types, dgents, etc. Thus, it is reasonable to take
stochastic uncertainties into account there. We@se an approach to develop a stochastic
extension to the mentioned models of glioma an#deua therapy. It can also be applied to
dynamic models describing therapy of other cangaeds. Moreover, we present the results of
numerical simulations demonstrating influence othkastic uncertainties with different noise
intensities or the level of uncertainties.

2 PROBLEM STATEMENT

First, let us introduce deterministic models obglia and leukemia therapy.

For the glioma model, the following state varialdes considered:

* Cis the quantity of brain tumour (glial) cells;

* Nis the quantity of normal cells;

* his the concentration of a chemotherapeutic agent;

* gis the concentration of nutrients (oxygen, glucese.).
Furthermore, the time variable is denotedt,bgnd amounts of the applied chemotherapeutic
agent are represented by a function u(t) which is also interpreted as an open-loop control
strategy. Then dynamics of the state variables esciibed by the system of ordinary
differential equations
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(1)

wherery, ra, C., Nu, K1, K2, vh, 7, 0g, R @re positive constants, I, are nonnegative constants,
andT > 0 is a time horizon. Here the growth terms filal@nd normal cells are Gompertzian
with replication ratesy, r, and limiting capacitie€.,, N, while I, |, specify the rates and
half-saturation constant in the term representiagative influence of glial cells on normal
cells. Parametergy and oy describe degradation and constant positive fluxnatrients.
Dissipation of the chemotherapeutic agent is detexch by y4, and its delivery rate is
proportional to the concentration of nutrients yadl as the growth terms in the first two
equations). There are also natural pointwise cams on the functiom = u(t) (since the
drug cannot be physically delivered with an arlityahigh rate). Moreover, negative
influence of chemotherapy on both glial and noro®ls is represented by the factagg(h)
andk; f(h), wherek; >k, (the drug affects diseased cells stronger thahabones) and(h) is

a so-called therapy function. As was discussednintroduction, the latter can be strictly
increasri]3ng or having a threshold effect. For mddg) let us choose a monotonic therapy
functio

f () % x>0, 2)

Note that, as opposed to the model of Bratus ef28l15¥, system (1) includes the
concentration of nutrients, which is more reasoadtdm the biomedical point of view.

For the model of acute leukemia, we consider swnfables as the quantity of leukemic
cellsL, quantity of normal cellsl, and chemotherapeutic agent concentratiofihere is no
any variable similar to the nutrient concentratipinom the glioma model. The corresponding
equations take the fofh?

di(t) _ rlL(t)ln( t(?)} —yp,L{t) -k f(h({t)L{), L(©)=L,,

dt

dg_t(t) = er(t)In(%)—yzN(t)—CL(t)N(t)—kgf(h(t))N(t)’ N(0)= N, 3)
%Et) = —yh(t)+ult), h(0)=hy,

O<ut)sR 0<t<T,

where the constants can be described similarlyhéoprevious model. However, negative
influence of diseased cells on normal cells becosmrewhat different. Now we take a
nonmonotonic therapy functidn
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f(h)=he”", g>o0. (4)
For model (1), viability constraints (discussedtia introduction) can be written as
Ct)sC, N{t)=N, ost<T. (5)

The control goal is to keep the system in the Vitgtisurvival) domain as long as possible.
For model (3), the highest control (therapy) gyatibrresponds to the minimum of the
integral functional

T (6)
i) = ED@P(L(t),N(t))dt}
0
(the expectation sign disappears in the deternrssise), where
> N=N,, (7)

o(L,N) = {

with a constantNy specifying a sufficiently healthy amount of normadlls. Such an
additional policy function represents the goal taoteduce the amount of normal cells much
lower than the suitable levik; (low amounts of normal cells can also lead to leat

For the sake of convenience, some of the paramapgesaring in models (1) and (3) have
the same notations, but this does not mean theialitgg Each of the models has its own
independent parameters. Our aim is to build swetabbchastic extensions of deterministic
models (1) and (3).

L2+ a(N, -N)* N<N,,

3 STOCHASTIC EXTENSION

One way of including stochastic uncertainties indela(1) is to replace the deterministic
equation for the therapeutic agent with the staohasguation

dh(t) = -y.h(t)dt+ gt)u(t)odw(t), (8)

wherew(t), t > 0, is a one-dimensional standard Brownian motémm, constant > 0 is the
noise intensity. For model (3), a similar modifioatcan be made. Such a type of stochastic
noise is often considered in mechanical systems cafied interndf’. In our biomedical
systems, it describes uncertainty in drug delivbggcause it is not known how much drug is
actually delivered in different patients with diféat cancer’s sub-types, especially in the case
of glioma.

However, it is more interesting to consider undetiain laws specifying negative
influence of a drug on diseased and normal celts.this purpose, introduce a stationary
Gaussian stochastic procegd, t > 0, with mean 1 and covariance function

E[(y(t)-2)y(s)-1] = o%expl-kk-5. (9)
One can easily verify that it satisfies the stothasjuation
dy(t) —k(y(t) -1)dt + o/2kawt). (10)

Such a process is used in stochastic aerospacedsito@rir approach is to includgt) in the
equations for diseased and normal cells as a faxsar the therapy functions. This indeed
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leads to random vibrations of actual therapy e$fecbund theoretical deterministic laws (2)
and (4). Thereby, model (1) is transformed into

9 = ngticlmn] Sy |- by, co=c,

d':'j—t(t) = rzg(t)N(t)In[%j—hi(i)lc\l:g—sz(h(t))y(t)N(t), N(0)= N,
) = )+ gt HO)= b, Gy
dd—'ft) = =700+ . 9(0)= g,

dy(t) = -k(y(t)-2dt+ ov2kaw(t), y(0)= o,
<ut)sR 0<t<T,
and model (3) is modified as

o

dﬁ—ft) ) rlL(t)'”(LL(?)J‘Vl'-(t)-klf(h(t))y(t)L(t), Lo)=L,,

dl:_t(t) = FZN(t)In(%'Bg‘VZN(t)—CL(t)N(t)—sz(h(t))y(t)N(t), N()= N,
dﬂﬁt -7,h(t)+ uft). h(0)=h,, (12)

dyt) = -k(ylt)-Ddt+ ov2kewlt). y(0)=y,

O<ult)sR, O<t<T.

It is also convenient to make the change of vaembl

c(t)=Inlc_/c(t)) nlt)=In(N_/N()

(13)
in model (1) so as to write the first two equatioma simpler form:
¢=-ngt)c) +k f () ), €0)=1In(c, /c,)
c e (14)
no= —rg(tht)+1,——g +k f(ht)yt). n(0)=In(n, /n,)
|, +c,e™
Similarly, in model (3), the change of variables
1(t)=n(L_/L({) n(t)=m(N_/NE) (15)
leads to the new first and second dynamic equations
[==rl () +y, +k, F (@) y(@), 1(0)=In(l./1,)
n = -ont)+y, +cle’® +k,f(ht)y(), n(0)=In(n,/n,) (16)
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4 NUMERICAL SIMULATIONS

In fact, our models are stated already in a fornthwdimensionless state and time
variableg' ®° This is reasonable, since the key objective @hssimplified mathematical
models is to obtain only general qualitative resulthey cannot serve for making accurate
quantitative predictions because of tremendous tmxaip of real biological systems.
However, we choose parameter values so than informally be interpreted as time in
months.

For the glioma model, we choose the following patars’ values (which conform with
the relevant orders of magnitude introduced byBrat al. (2015):

r,=0.02, r,=0.012, InC.=INN,=19, k;=4, k=1, 1,=0.1, 1,=4010, x=1,
a,=0.425,7 =0.04, y,=0.15, k=0.05, C= 410", N=5010", R=0.0075, (17)
T=30, C,=10", N=10°, g,=12, h,=0, y,=1.
Let us consider two deterministic open-loop therapwtegies as shown in Fig. 1. Both of
them keep the deterministic system viable on thelevinterval [0,T]. They also consume
equal drug amounts. Influence of stochastic nois¢he state trajectories as well as on the

mean viability times is illustrated in Fig. 2.
For the leukemia model, we take

r,=r,=0.1, y,=y.=0.04, y,=0.4, p=0.01, k,=2.5, k,=1.4, c=10 19,
L.=N.=10", k=0.05, N,,=7.5010", a=10, R=1, (18)
T=10, L,=1.8110°, N=10°, h=0, y,=1
(in compliance with the relevant orders of magnétgiven by Bratus et al. (20£2Bratus et

al. (20135) and consider the deterministic open-loop therspgtegy indicated in Fig. 3.
Dependence of the mean values

e[C] = E{%]L(t)dt}, E[N] = E{%];N(t)dt}

0

(19)

and functional (6) (opposite to mean therapy gyatin the noise intensity is shown in Fig. 4.
From Fig. 2 and 4, one can see that, as the naisesity increases, the mean viability time
in the glioma model decreases, and functional 6)he leukemia model increases. Thus,
stronger uncertainty implies lower mean therapyliguand this dependence is nonlinear. In
the leukemia model, the mean therapy quality deeauch faster for greater uncertainties.
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Figure 1:Deterministic therapy strategiat) andu,(t) in the glioma model.
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Deterministic (o = 0) and perturbed (¢ = 0.2) state trajectories
on the plane (C, N) for hy =0, gy = 12, y; = 1 and the control u(t)

5=0 30 [ —eo— For u(t)
1e+08 0 =0.2 || —e— Foruy(t)

Viability constraints

25

8e+07 |
/t:zs 20 |

6e+07 15 |

10
4e+07

Mean viability time on the interval [0, 30]

2e+07

0 le+07 2e+07 3e+07 4e+07 5e+07 6e+07
C

Figure 2: Glioma model. Left: Perturbation of thetetrministic state trajectory under therapy stratedt) by
stochastic noise with intensity = 0.2. Right: Mean viability times for therapy atEgiesu,(t) and ua(t)
depending on noise intensity
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Figure 4: Leukemia model. Left: Mean values (19peateling on noise intensity. Right: Functional (6)
(opposite to mean therapy quality) depending oseitensitys.

Note that stochastic uncertainties in our modetseatternal according to the terminology
of Bratus et al. (20183, Hence, our results conform with the property Stabnger external
uncertainties should decrease mean control qlflitis also leads to the hypothesis that
these uncertainties may cause significant changeshe structures of optimal control
strategies.
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Furthermore, Fig. 2 indicates that, in the gliomadel with a sufficiently small
uncertainties, controlu,(t) leads to a greater viability time than controj(t) with
consecutively decreasing dosages. For strongee nbis results become almost the same.

CONCLUSION

In this paper, we proposed an approach to devetmghastic extensions of deterministic
dynamic models arising in Biomedical Sciences. pecific nonlinear models concerning
glioma and leukemia therapy were formulated and teetended to the stochastic case by
using the proposed approach. We also performed mecathesimulations in order to obtain
how the included stochastic uncertainties affectadyics of the systems and, in particular,
how much viability (survival) times or other criterof therapy quality decrease with
increasing uncertainties. For a future work, iwvigrth investigating to characterize influence
of stochastic uncertainties on solutions to dynaopitmization problems for such biomedical
models.
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