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Abstract.Friction induced vibrations are present in many ieregring systems, e.g. in brakes
and cam follower systems. In these systems, smlé@xoscillations may occur. Surface
roughness is an important source of uncertaintyfriiction systems. The aim of this
contribution is to study the influence of surfaceighness on friction induced vibrations. To
this end, a statistical analysis of measured rosgtfaces is carried out in order to generate
statistical representative surfaces. From the Baw@labor approach, the friction coefficient
of these surfaces is computed and represented sigchastic process. As an example, the
classical mass on a belt system is considered, evbiizk-slip vibrations occur. A stochastic
process is introduced into the model and its infieeeon the limit cycle is studied. It is shown
that the stochastic nature of the friction coeéiti alters the stick-slip limit cycle.

Sommario Attrito indotta vibrazioni sono presenti in moltsmi di ingegneria, ad esempio
nei freni e sistemi di punteria. In questi sisteptissono verificarsi oscillazioni auto-eccitate.
Rugosita superficiale € una causa importante dliitezza nei sistemi di attrito. Lo scopo di
questo contributo e di studiare l'influenza dellagosita superficiale su attrito indotta
vibrazioni. A tal fine, l'analisi statistica deliuperfici ruvide misurate e effettuata al fine di
generare superfici rappresentativi statistici. Dafiproccio Bowden-Tabor, il coefficiente di
attrito di queste superfici € calcolato e rappretseo da un processo stocastico. Come
esempio, il moto di una massa su un nastro e ceredig, in cui succedono vibrazioni di typo
aderenza-slitamento. Un processo stocastico éilofito nel modello e la sua influenza sul
ciclo limite é investigata. Si mostra che la natgtacastica del coefficiente di attrito altera il

ciclo limite aderenza-slittamento.

1 INTRODUCTION

Dry friction between rough surfaces is present anynengineering systems and noise due to
friction induced self-excitation is a common prable.g. in brake systems. It is the objective
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of this contribution to study the influence of techastic nature of the surface heights for
rough surfaces on the friction coefficient and be timit cycle of self-excited oscillatory
systems with friction. To this end, a multiscaledabis established, that ranges from the
stochastic description of rough surfaces to theessmtation of the friction coefficient as a
stochastic process and the identification of ipprties in order to studyfriction oscillators
with stochastic friction coefficient. The differeptarts of this model are described in the
following sections and some consequences of thehastic nature of the friction coefficient
for friction induced vibrations are highlighted.

2 STOCHASTIC MODELS FOR ROUGH SURFACES

From white light interferometry, statistical chaetstics such as the probability density
function, the correlation function and the spectdansity of the surface heights can
beestimated. With this information, sample surfacas be generatedby means of random
field representations of the surface heigltitg 6), wherex denotes the spatial dependence
and 6 represents the random event. The following twalsdstic descriptions of rough
surfaces are nowadays widespread[1] and are statedor scalar spatial dependence only:

1. A fractal approach, where(x, 8) is represented by the Weierstrass-Mandelbrot
function

2(,0) = ) y® i cos(yx+ (), ®
j=—o00
wherel < D < 2 denotes the fractal dimension of the surface, 1 determines the
density of frequencies and the random variabj€8)that are uniformly distributed on
[0,2 m]represent random phase shifts.

2. A Karhunen-Loéve expansion

2(,6) = Elz(x, )]+ ) [ 0/(05,©) @
=1

wherg(l;, ¢;) are the eigenvalues and eigenvectors of the aweei function of
z(x,0). In practice, this series is truncated at a gimeterM. If z(x, 0) is a Gaussian
random field, £;(6) will be independently distributed standard Gaussiandom
variables.

If the random field does not follow a Gaussian rdistion, an isoprobabilistic
transformation can be applied in order to transfdrenGaussian field into another field which
follows the given probability density function, #ie price of perturbing the correlation
function. Both descriptions can be generalizedetar-valued spatial dependence, cf. e.g. [2]
for the Weierstrass-Mandelbrot function.
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3 COMPUTATION OF THE RANDOM PRESSURE FIELD

3.1 Solution of the normal contact problem

Before discussing the stochastic normal contacblpro, the normal contact of a single
sample of a rough surface is studied in the follmyviConsider the normal contact between a
flexible rough and a rigid flat surface with pemgiond, cf. Figure 1. If the local interference

u,(x) = z(x) — (go — d) 3)

between the two surfaces is non-negative, the wiaces are in contact at The total
complementary potential energy is given by theedéhce of the surface integrals

1 _
%4 =§J-S p(x)uz(x)dS—J-S p(x)u,(x)dS, (4)

wherep(x) is the contact pressure angd(x) the displacement. Under assumption of the
linear elastic half-space theory, displacement pressure are related by the Boussinesq
equation

1-v? p(§,n)dédn
w,(0y) = — = = (5)
mE s Jx =7+ —m)
whereE' denotes Young's modulus amdPoisson’s ratio. This relation is discretized on a
mesh for the contact surfaSe

N
Uy = ZBij pj (6)
=

and inserted into the discretized expression fercttimplementary potential energy:

L N N
Ve = Ez i ZBij Dj —Zpiﬂz,i- (7)
i=1 ]:1 i=1

In order to find the discretized values of the pues field, eq. (7) is minimized under the
constraint that the contact pressure is non-negativ

The approach can be extended to elasto-plasti@cbhy introducing an upper bound for
the contact pressure and splitting the displacemmémtan elastic and a plastic part. Additional
iterations are necessary in order to find the astd to correct the elastic displacements, cf.

3].

Meccanica dei Materiali e delle Strutture | VI (2016), 1, PP. 115-122 117



Nicole Gaus, Carsten Proppe e Cédric Zaccardi.

N

/Y max(zr)]

Figure 1: Contact between a flexible rough andjal fflat surface.

3.2 Discretization of the random pressure field

Due to the randomness of the surface heights,diaéian of the normal contact problem is

a random pressure field. In principle, its promsrtcould be determined by Monte Carlo
simulation. To this end, the series representadiothe surface roughness is truncated and
sample surfaces are generated from samples ofathgom variables;(6),j =1, ..., M.
Then, the elasto-plastic normal contact problemsa$éved for each sample surface to
determine the pressure field. However, in ordeddscribe precisely the cumulative density
function of the pressure, a huge number of MontdoGamulations has to be performed. This
is not suitable for large scale problems.

In the following, an approach based on regressimh @olynomial chaos expansion is
introduced that permits to approximate the cumwgatiensity function without drastically
increasing the problem size. To simplify the explaon, we limit our approach to the
determination of the pressure field at a given fpmsix which is a random variablg,(9).
The approach can be easily extended to the detationnof the complete pressure field. We
will distinguish the pressure when contact occues (vhenp,(6) > 0, denotedp,(8)) and
probability of contact at a positionwhich is given byl — p;(0), wherep; is the cumulative

density function o, (6).

By means of a polynomial chaos basis, the contaesspre can be expressed as the
positive part of a polynomial expansion
+

p
pe(0) = | Y pui E©) ®)
i=1
or by expandingog (p,(6)):

P
log (po(6)) = ) Fies HE(O) ©

wherd;(£(60)),£(0) = [¢;(0)];=1,..u, are multi-dimensional orthogonal polynomials. As
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the functionsI;(¢(0)) and the random variabl®) are known, the solution is fully
determined by the coefficiepts;andp, ;, resp.

3.3 Determination of the expansion coefficients
The unknown expansion coefficients for the randoesgure field are computed following
a regression approach [4]. They are estimated theminimization of the least square error

between the polynomial representation and resu,ift)sfor the pressure obtained for a set of
K,realizations of the random variabléee) denoted in the following b§®, k = 1, ..., K,.
E.g., the coefficientg, ;,i = 1, ..., P, are estimated by mlnlmlzmg at each position

P
[@—mewm
i=1

wherqo,(ck) is the pressure obtained by solving the normatamirproblem for a smooth
rigid plane and the rough surface definedzgy, £€*)). Keeping onlyK realizations which

induce a strictly positive pressqng‘), the coefficients read:

[P, = @"D)I7P, (12)

(10)

wherd is aK x P matrix such thaf;; = [;(§) and P, is the vector containing th

contact pressurqg(ck),k =1,...,K. To ensure the well-posedness of the problemntineber

of realizationsK has to be greater thah Thus, for low penetration of the two surfaces, it
might be necessary to generate a large numberngblea. By selecting a Latin Hypercube
Sampling scheme, few realizations are needed irerotd estimate the unknown
coefficients.FromK /K;, the probability of contact at position can be estimated, which
completes the stochastic description of the coneegtsure.

Figure 2 compares the distribution of the contagsgure obtained with Monte Carlo
simulation, Latin Hypercube Sampling and polynonaia&os expansion with 165 expansion
coefficients for a square shaped Gaussian surfébeshort correlation length (1/1000 of the
edge length of the surface) leading to 101 coeffits in the Karhunen-Loeve expansion. The
penetration depth was the median of the surfacghtseiThe two variants of the polynomial
chaos expansion are nearly indistinguishable. Heenlow probabilities, the polynomial
chaos expansion matches well with the results oétairom Latin Hypercube Sampling.
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Figure 2: Cumulative distribution function for thentact pressure in the center of a Gaussian surfac
Comparison of Monte Carlo simulation (MCS), Latiggércube Sampling (LHS), and polynomial chaos
expansion (PC) according to egs. (8) and (9), resp.

4 STOCHASTIC FRICTION COEFFICIENT

From the random pressure field, the Bowden-Tabqrageh [5] for adhesive friction
allows to determine a stochastic process for tiesiidn coefficientu. For a given test surface
and under assumption of a shear dominated fridbore, the friction coefficient is computed

fromu = Tmajfv—“c wherert,,,, IS the shear strength of the material. The corateedA,. and

the normal forceN are obtained by averaging the pressure field entéist surface. The
autocorrelation function gi can be estimated by comparing the results forteso surfaces
centered at different coordinates of the pressate.f

Figure 3 displays results for the mean value areddfiandard deviation of the friction
coefficient for Gaussian surfaces as in the previsection but with dimensioR5 um X
600 um and different penetration deptlisMean value, standard deviation and coefficient of
variation decrease with increasing penetration lgegitven as percentile of surface heights
that are initially penetrated. The friction coeiiéist was found to be exponentially correlated
with correlation lengti250 um, independent of the penetration depth. The digioh of the
friction coefficient deviates from a normal distrtion, it is found to be right skewed and
leptokurtic.When scaled to the interval (0,1) thietion coefficient follows a Beta(2.1,5)-
distribution, independent of the penetration.
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Figure 3: Mean value (a) and standard deviatioroflthe friction coefficient as function of the mration.
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5 STOCHASTIC FRICTION-INDUCED VIBRATIONS

The system under consideration consists of a ma#sat moves on a belt, see Figure 4.
The belt moves with constant velocity. The mass is attached to the surrounding by agpri
(spring constant) and a damper (damping constahf). It is externally excited by the
harmonic forceQcoqt). Two different motion modes may occur:

_.y

Nl — Q cos(Qt)
dy

It

= m

O

Figure 4: Friction induced vibrations of a massadrelt.

AN

the stick mode, where the mass sticks to the Ipelttiae slip mode, where the mass slips due
to the restoring force. The conditions for thelstitode are

X = vgand|Fgs:| = |cy + dyy — Qcos(£2t)]. (12)

In slip mode, the friction forc&; = u(v,.;)Nsign(v,.;) changes its sign according to the
direction of the relative velocity.,; between mass and belt. The friction coefficieqit,..;) is
represented by a deterministic and a stochasticuparu, + us.The deterministic part is
described by a Stribeck law

_ Urie(d)
Ko = 1 42[0,,]

withus;(d) obtained from the mean value curve, Figure 3 de $tochastic part is
modeled by a stochastic process that is generatesh the spectral representation.
Realizations of the stochastic process are germkratnsformed from space to time domain
and the equation of motion is integrated by a Rudgga-Fehlberg method. For self-
excitation, a natural frequency @f = 316 -, a damping coefficient of 0.17, a velocity of the
belt of 22-0.003,and a normal force of 2.5 kN, Figure 5 displays lingt cycle for the
dimensionless displacmeéfit and velocityX, of the mass and the empirical probability
density function for the reattachment palfy, of the stick-slip limit cycle. By comparison
with the normal probability density function, itrche clearly seen that also the reattachment
point is nonnormally distributed. Figure 5 c) deyd the differenceMy;rr = My —
E[M,]between the number of limit cycles for the deteistia system g, = 0) and the mean
number of limit cycles of the stochastic systemthe same amount of time for different
values of the damping coefficient. While for thekatinistic system, there is a sharp limit for
the damping coefficien where the limit cycle ceasesxist, there is a range of values for the
damping coefficient where the stochastic systemstilrmove on the limit cycle.
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Figure 5: Limit cycle (a), histogram for the reatienent point (b), and difference between the nurober
limitcycles for the deterministic and the stochastistem (c).

6 CONCLUSIONS

A method has been developed that models uncedsimtiie to surface roughness and
studies its influence on the friction coefficiemidaon friction induced vibrations. The surface
heights of the rough surface are described by rcated Karhunen-Loeve expansion. The
resulting pressure field under normal contact pgesented by a polynomial chaos expansion
and the probability of contact has been computetllly, the friction coefficient is modeled
as a stochastic process whose properties are ebtdollowing the Bowden-Tabor
approach.It could be shown that the statisticataidtaristics of the friction coefficient depend
on the contact pressure and are non-normal. Fotioini induced vibrations, the stochastic
nature of the friction coefficient influences thack-slip limit cycle. This effect can be
investigated with a simple model of a mass on & lpelstudying the properties of the limit
cycle and comparing the results to the determincsise.
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