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Abstract. This paper proposes two stochastic approaches for numerical prediction of the 
effect of seasonal temperature changes on dynamic bridge parameters. The first simpler 
approach, appropriate for bridges modeled as Euler-Bernoulli beam, assumes that the 
fundamental bridge frequency is a bilinear (or multi-linear) function of the environmental 
temperature, specified as random variable. In the second more sophisticated approach used 
in elaborate finite element bridge models, the seasonal frequency change is related to the 
frost depth in subsoil and ballast (in case of railway bridges). Here it is assumed that the 
unfrozen and the fully frozen condition, both modeled as stochastic variables, are correlated 
with the daily minimum temperature at the ground. Monte Carlo simulation of a case study 
railway bridge shows that this environmental model captures qualitatively the seasonal 
temperature changes of the natural bridge frequencies, as observed in monitored bridges.  

1 INTRODUCTION 

In structural dynamics the modal structural parameters, i.e., natural frequencies, mode 
shapes and damping coefficients, are commonly considered as constant quantities. This 
implies that the structural stiffness remains constant throughout the life cycle of the building.  

It has, however, been recognized that changes of the environmental conditions may modify 
the dynamic behavior of certain structures. For instance, under severe earthquake excitation 
non-structural elements such as in-fill walls or partition walls may fail, reducing significantly 
the lateral stiffness of the building. In the long term, the structure may be subject of 
environmental induced corrosion, which gradually decreases the stiffness of structural 
components. Sedimentary depositions (for instance, in the ballast of railway bridges, or at the 
supports) may lead to a stiffening of the structure. In some buildings also wind (Xu et al.1) 
and humidity (Moser and Moaveni2) may affect the stiffness. In particular, the natural 
frequencies of bridge structures are vulnerable to seasonal temperature changes. For instance, 
Moser and Moaveni2 observed during a 16 weeks monitoring period of a footbridge variations 
of the first natural frequencies between 4% and 8% in the air temperature range from −14 °C 
to 39 °C. While above freezing the effect of the environmental temperature on the natural 
frequencies is small, a drop of temperature below freezing increases significantly - and in 
some cases even stepwise - the natural frequencies. Peeters and De Roeck3 report on a 17% 
maximum variation of the first natural frequencies of a highway bridge during a one-year 
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monitoring campaign, and Gonzalez et al.4 found an increase of 12% of the first and an 
increase of 20% of the second natural frequency of a ballasted single-span railway bridge if 
temperature drops below the freezing point of water. This behavior can be attributed to the 
increase of stiffness through the formation of ice, frozen water in the ballast, ground, 
abutments, and supports, and it is confirmed by other studies such as Alampalli5. In contrast 
to the bridge stiffness (and consequently the natural frequencies), seasonal temperature 
variations do, however, not change noticeably the damping behavior, as reported by Moser 
and Moaveni2. Frequency changes due to material deterioration (i.e. stiffness reduction) are in 
general lower than temperature induced frequency variations, but may be according to 
Alampalli5 also in the order of 3% to 8%. 

Neglecting the variation of natural frequencies may have a grave effect on the numerically 
predicted structural safety. For instance, tuned mass dampers aimed at protecting a building 
against prohibitively large vibration amplitudes may become detuned, and thus, loosing much 
of their efficacy. Other examples are railway bridges, where resonance speeds may be shifted 
to operating speeds of high-speed trains, thus exciting the structure to unexpected large 
vibrations. Consequently, for a reliable prediction of the failure probability of the 
serviceability limit state respectively the ultimate limit state of affected buildings, the 
environmental impact on the dynamic structural parameters must be considered. However, 
there is a lack of appropriate models that are able to capture this effect in numerical analyses.  

In an effort to overcome this shortage, based on previous accomplishments of the authors 
(Salcher et al.6,7, Salcher8), in the present contribution two stochastic approaches are 
proposed, aiming at modeling the seasonal variation of natural frequencies and mode shapes 
of ballasted railway bridges for numerical analyses.  

2 OBSERVED ENVIRONMANTAL EFFECTS ON BRIDGE PARAMETERS 

As an example presented in Gonzales et al.4, in Figure 1 the first vertical bending 
frequency and the first torsional frequency of a simply supported single-span ballasted 
railway bridge located in Skidträsk, Sweden, are plotted against the environmental 
temperature T. The natural frequencies have been identified from vibration data recorded 
during a one-year measurement campaign. It is readily observed that, globally, with dropping 
temperature the frequencies become larger. While at temperatures above zero degree Celsius 
the dependence of the frequencies on T is small, at temperatures close to the freezing point of 
water, T = 0 °C, a significant frequency discontinuity is observed. This behavior can be 
attributed the stiffness change of ballast and subsoil due to phase shift of water from liquid to 
solid and vice versa. In the considered bridge, according to Gonzales et al.4, the vertical 
bending mode is more affected by the subsoil stiffness, while the frozen ballast contributes 
more to the torsional stiffness of the bridge structure. The first vertical natural bending 
frequency is at temperatures below the freezing point on an average about 12% larger than at 
positive temperatures. The first torsional frequency shows even a difference of about 27%. 
Similar temperature dependent discontinuous behavior of the natural frequencies of bridges 
has been detected by Moser and Moaveni2 and Peeters and De Roeck3, among others. In some 
bridges the frequency-temperature relation is bilinear with a kink at the freezing point, while 
in others this relation shows a step-wise discontinuity close to zero degree Celsius (Figure 1). 

In an alternative representation, Figure 2 depicts the natural frequencies and the 
corresponding environmental temperature of the previously discussed bridge located in 
Skidträsk, Sweden, as a function of the season. This representation reveals that there is no 
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direct relation between the environmental temperature and the natural frequencies. While the 
temperature shows a large fluctuation throughout the year, the frequencies remain at two more 
or less constant levels, the higher one from the end of November to April, and the lower one 
in the remaining period of the year. Based on this observation, Gonzales et al.4 conclude that 
the seasonal frequency shift depends on the frost depth in subsoil and ballast, and it is not a 
direct function of the environmental temperature. 

From this discussion it becomes obvious that modeling of the seasonal impact on dynamic 
bridge parameters is not straightforward.  

 
Figure 1: Natural frequency-temperature relationship of a simply supported ballasted railway bridge located in 

Skidträsk, Sweden. Modified from Gonzales et al.4. 

 
Figure 2: Natural frequencies identified from one-year monitoring of a ballasted railway bridge located in 

Skidträsk, Sweden, and corresponding environmental temperature. Modified from Gonzales et al.4. 

3 BLACK BOX APPROACH FOR SEASONAL EFFECTS ON BRIDGES 

The in several bridges observed, in essence, bilinear natural frequency-seasonal 
temperature relationship is the basis of a phenomenological black box environmental model, 
appropriate for simple bridge structures that are approximated as Euler-Bernoulli beam 
(Salcher et al.6). In this approach the fundamental bridge frequency f1 is assumed to be a 
bilinear function of the daily mean temperature T, i.e., 

  
f1(T) = fT0 + k(T) T − T0( ) , 

  k(T) = k1∀T ≤ T0 and   k(T) = k0 ∀T > T0, as shown in Figure 3. Deterministic input 
parameters that need to be defined are slopes k1 and k0 (with k1 > k0) of the linear branches, 
the initial fundamental frequency fini at temperature Tini, and temperature T0 (close to 0 °C) at 
the kink of this function. From these data the fundamental frequency fT0 at T0 is deduced. In 
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numerical simulations, bending stiffness EJ(T) is considered as temperature dependent 
variable, derived from the fundamental frequency f1(T) of the Euler-Bernoulli beam as 

  EJ(T) = f1
2(T)ρ A / α1

2.  α1 is a parameter depending on the boundary conditions of the beam 
model. For a simply supported beam   α1 = π / (2L2) .  

The daily mean temperature T is considered as a random variable, specified by a Gaussian 
or extreme value distribution (Salcher8). The distribution is calibrated to temperature data 
recorded close to the site of the bridge.  
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Figure 3: Bilinear natural frequency-temperature relation of a black box environmental model for beam bridges. 

It should be noted that this approach is not limited to a bilinear fundamental frequency-
temperature function, but any relation can be prescribed. As an example, in Figure 3 at 
temperature T0 a stepwise discontinuity is introduced, as it has been observed in some 
monitored bridge structures. That is, in the temperature range up to T0 the dashed line governs 
the f1-T relation, and in the temperature range T > T0 frequency f1 follows the linear function 
with slope k0 . 

4 STOCHASTIC MODELING OF SEASONAL EFFECTS ON BRIDGES 

The approach based on a bilinear (respectively multi-linear) natural frequency-temperature 
relation cannot be applied to a more sophisticated two- or three-dimensional finite element 
model of a bridge structure, because no global stiffness parameter (such as the bending 
stiffness in a beam) does exist. Therefore, for finite element models a more elaborate 
stochastic approach is proposed to describe the seasonal impact on the dynamic parameters, 
related to the frost depth of the adjacent subsoil and (in case of railway bridges) the ballast.  

As in the previous approach, the daily mean temperature T is a random variable with 
suitable distribution, calibrated to temperature data recorded close to the bridge site. The frost 
depth, which has the most distinct and instant influence on the seasonal frequency change, is 
modeled simplified, defined by the limits states fully frozen respectively unfrozen. It is 
assumed that the fully frozen state, where up to the maximum frost depth all water is in the 
phase of ice, is attained at a daily minimum temperature measured at ground level, 

 Tg , less 
than 10 °C (i.e., 

  Tg < 10°C ). In the unfrozen state, 
 Tg  is assumed to be equal or larger than -

1 °C (i.e., 
  Tg ≥ −1°C), implying that freezing is initiated if 

 Tg  drops below   −1°C . The fully 
frozen state is governed by random temperature variable   T1, defined by the conditional 
distribution of the daily mean temperature T with respect to the daily minimum temperature at 
ground level 

  Tg < 10°C : 
  ϕT1(T |Tg < −10°C) . Random temperature variable   T0  for the 

unfrozen state is described by the conditional distribution 
  ϕT0(T |Tg < −1°C).   ϕT1 and   ϕT0 

are fitted to temperature data of the bridge site. Thus, in this model the two limit states of the 
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frost depth are described probabilistically as a function of temperature data only. Transitional 
phases between the fully frozen and the unfrozen state are linearly interpolated. Since in the 
fully frozen state the temperature must be lower than at freeze initiation, the transition from 
fully frozen to unfrozen condition follows a step function if   ϕT1 ≤ ϕT0.  

Fully frozen ballast is stiffer than in the unfrozen condition, approaching Young's modulus 
of ice. Thus, in the fully frozen state to the ballast Young’s modulus of ice is assigned, 
modeled as a random variable. The material properties of ice vary in a quite large range 
because they depend on ice formation, temperature, temperature changes, humidity, load 
speed, etc. (Hobbs9). In the proposed environmental model, Young’s modulus of the ballast is 
modeled as a Gaussian distributed random variable with a mean of 9.45 GPa and a coefficient 
of variation of 0.05 GPa (see Hobbs9). In the fully frozen condition the stiffness of the 
modeled subsoil domain is increased proportionally according to the increase of the ballast 
Young’s modulus. The unfrozen state is defined by the unmodified (in some circumstances 
random) variables of the ballast and subsoil. 

If the bridge is built of steel components, the effect of the surrounding air temperature on 
Young's modulus of steel,   EsT (T) , is captured through a linear temperature dependent 
function as proposed in ASME10, i.e.,   

EsT (T) = Es −1.67×108 T − TE0( ) . Reference value  Es 
corresponds to Young's modulus of steel at temperature   TE0 = 20°C.  
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Figure 4: Time history of the daily mean temperature T and the daily minimum temperature Tg, recorded at the 

ground recorded at Munich Airport, Germany. Modified from Salcher et al.7. 

5 APPLICATION 

In an example application the Munich Airport, Germany, is selected as location of a bridge 
structure to be studied, internationally known and representative for the climate at the latitude 
of Central Europe. Public available temperature data for this particular site (DWD11) are used 
to define the distribution of the daily mean temperature T, which serves both for the black box 
and the more elaborate stochastic seasonal model as random variable. In Figure 4 the black 
graph represents the time history of the daily mean temperature T measured at a height of 2 m 
above ground in the 20-year period from 1992 to 2012. The histogram shown in Figure 5(a) is 
the corresponding relative frequency of T, and the gray graph in Figure 5(b) the cumulative 
frequency of T. Now a suitable distribution is selected to describe appropriately the statistics 
of T as random variable. In Figure 5(a) the dashed red line corresponds to a Gaussian 
distribution fitted to the histogram. After testing the assumption of a Gaussian distribution for 
the data representation using a  χ

2 and a Lilliefors test, this hypothesis has been rejected at a 
significance level of 5%. The extreme value distribution shown in Figure 5 by a black graph, 
and with mean of 9.00 °C and coefficient of variation (CV) of 1.01 °C, is, thus, a more 



Patrick Salcher and Christoph Adam. 

Meccanica dei Materiali e delle Strutture |  VI (2016), 1, PP. 107-114  112 
 

appropriate representation of temperature data T.  
For the second proposed seasonal model, in the subsequent step the conditional 

distributions 
  ϕT1(T |Tg < −10°C)  and 

  ϕT0(T |Tg < −1°C) are derived. In Figure 4 
additionally to T also the corresponding time history of the daily minimum temperature at 
ground, 

 Tg , (i.e., measured at 0.05 m above ground level) is depicted in red. Dashed 
horizontal lines indicate the limit temperature levels   −1°C  and   −10°C , defining the 
unfrozen and the fully frozen ballast. The two histograms shown in Figure 6 represent the 
distribution of the daily mean temperature T of those days in the 20-year observation period, 
where the daily minimum temperature at ground 

 Tg  was less than   −10°C  respectively 

  −1°C . These histograms can be accurately approximated by conditional Gaussian 
distributions   ϕT1 (mean -6.33 °C, CV 0.54 °C) respectively   ϕT0 (mean 0.69 °C, CV 7.38 °C), 
as depicted in Figure 6. Based on these distributions, Figure 7 shows the freezing condition of 
100 random samples with respect to the daily mean air temperature T determined in a Monte 
Carlo simulation. The transition from fully frozen to unfrozen substruction is linear, as 
assumed in the model. Vertical lines indicate that in some cases freezing is initiated at the 
same temperature as the fully frozen state is attained. This model does, however, not allow 
freeze initiation at temperatures lower than for the maximum frost depth. 

 
Figure 5: (a) Histogram of the daily mean temperature T and corresponding fitted distributions. (b) Cumulative 

frequency and corresponding cumulative distribution functions. Modified from Salcher8. 

 
Figure 6: Conditional histograms of T for given Tg, and fitted normal distributions. Munich Airport, Germany.  

(a) Tg < -10 °C (b) Tg < -1 °C. Modified from Salcher8. 

A simply supported single-span ballasted railway bridge located close to the Munich 
Airport, Germany, is considered as case study object to test the proposed stochastic 
environmental model. The steel bridge with cross-section depicted in Figure 8(a), span 
L =16.48 m, and width b1 = 4.67 m carries a single track. The fundamental frequency f1 of this 
bridge at temperature T = 9.0 °C is 9.28 Hz. The detailed geometry of structure and track, and 
the material parameters of its components are complied in Salcher8. A full three-dimensional 
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finite element model of the bridge with six degrees of freedom per node is built. The rails 
resting on the bridge and the adjacent subsoil (with excess length of 5.2 m at both sides) are 
discretized by means of Euler-Bernoulli finite beam elements. Linear elastic springs support 
the rails in the domain outside of the bridge to capture the behavior of the ballast and subsoil 
properties. For details on the numerical model it is referred to Salcher8. 

Based on the proposed environmental model with random variables specified before, a 
direct Monte Carlo simulation with 1000 random bridge samples has been performed to reveal 
the temperature induced dispersion of the natural bridge frequencies. Figure 8(b) shows the 
resulting histogram for the first and the second natural frequency. The dispersion left of the 
mean frequency results mainly from uncertain material parameters of the structure, while the 
lower densities larger than the mean frequency can be led back to the random environment 
model. Subsequently, the computed frequencies are plotted against the corresponding daily 
mean temperature T, resulting in the scatter plot shown in Figure 9. These outcomes prove 
that the proposed stochastic environmental model captures qualitatively the virtually stepwise 
change of the natural frequencies around the freezing temperature of water.  
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Figure 7: Frozen state as a function of daily mean air temperature for 100 random samples, based on temperature 

data recorded at Munich Airport, Germany. Modified from Salcher et al.7. 
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Figure 8: (a) Cross-section of the case study bridge. (b) Distribution of the first and the second natural frequency 

of 1000 bridge samples due to seasonal temperature variations. Ballasted railway bridge located at Munich 
Airport. Modified from Salcher8. 

6 SUMMARY AND CONCLUSIONS 

Two approaches for capturing in numerical simulations the seasonal effect on natural 
frequencies and mode shapes of bridge structures have been described. In the first black box-
like model an appropriate relation between fundamental frequency and environmental 
temperature has been established. This approach can be used for reliability assessment of 
bridges, based on Euler-Bernoulli beam models. The second approach relates the frost depth 
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in subsoil and ballast and the natural frequency variation in a stochastic manner. Two limit 
states of the frost depth, i.e. the fully frozen state and the frozen state, are expressed in terms 
of random variables with conditional distributions of the daily mean air temperature for 
defined thresholds of the daily minimum temperature recorded at ground level. Application of 
this approach to a ballasted railway bridge shows that the predicted scatter of natural 
frequencies with respect to the environmental temperature reflects qualitatively the stepwise 
scatter around the freezing point of water, as it has been observed in monitored bridges. 
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Figure 9: First and second natural frequency of 1000 bridge samples plotted against temperature T. Ballasted 

railway bridge located at Munich Airport, Germany. Modified from Salcher et al.7. 
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