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Abstract.Response surface models are frequently chosen to reduce computational cost for 
structural optimization problems. These methods are also very popular for structural 
reliability analysis. It is therefore not surprising that response surface models are very 
attractive for reliability-based structural optimization. The paper discusses strategies to 
obtain a suitable response surface model, to assess its quality concerning prediction, and to 
use the response surface mode to identify important and unimportant variables. Selected 
mathematical and structural examples illustrate the applicability of the presented approach. 

1 INTRODUCTION 

Due to the ever increasing demand on performance and cost-efficacy of structures, the need 
for numerical tools to optimize such structures in the design process has become very strong. 
The computational demand arising from optimization methods is quite heavy, and it is even 
more increasing since various stochastic uncertainties have to be taken into account in the 
design optimization process (see e.g.1). 
The sources of uncertainties in structural optimization may arise from several sources: 

• Design variables (e.g. manufacturing tolerances) 
• Objective function (e.g. tolerances, external factors) 
• Constraints (e.g. tolerances, external factors) 
These sources are indicated in Fig. 1. For structural safety issues, the main concern are 
uncertainties in the constraints. This usually comes from the uncertainties in the loads (e.g. 
wind or earthquakes). The traditional design approach to take these unavoidable uncertainties 
into account is the introduction of so-called safety margins (cf. Fig. 2). One of the major 
issues in establishing design procedures in code format is the appropriate (and in a sense 
optimal) definition of the safety margins. 
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Figure 1: Uncertainties in Optimization 

 
Figure 2: Safety Margin in Optimization 

2 RESPONSE SURFACE MODELS 

2.1 Mathematical Formulation 

The mathematical formulation for response surfaces is closely related to linear regression and 
interpolation modeling. A response surface model is based on linear regression if its 
functional form is linear in the unknown parameters ��, i.e. 

�(�) = � ��
	

�
�
��(�) 

A regression model is constructed from a sequence of input values �
, � = 1 … �  and 

corresponding model output values �
, � = 1 … �. The set of parameters �� can be determined 
by solving the least squares problem 

�� = � ��
 − ∑	�
�����(�
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If the number of parameters ! is equal to the number of data pairs �, then the regression 
model becomes an interpolation model. 
Global functions are functions not localizing in certain areas (such as polynomials). Simple 
examples are linear polynomial function 
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and the quadratic model 
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Localized models represent the response in specific regions, such as radial basis functions3 

�((�) = � ��
	

�
�
)�(�, ��) 

in which )�(*) = )�(||*||) = )�(,) are functions depending only on the magnitude of the 
vector argument and �� are the localization points of the RBF functions. If the localization 
points coincide with the data points, then this model is interpolating. Otherwise it is a linear 
regression model. A typical example are thin plate splines for which the radial dependence is 
modeled as )(,) = ,�log, 

2.2Design of Experiments (DoE) 

In order to establish the response surface, a set of support points is needed. These points 
should satisfy the following requirements: 
• Explore range of variables by numerical experiments 
• Cover range of all variables as uniformly as possible 
• Keep number of experiments small 
An intuitive approach would be to divide each variable into 0 small intervals and cover all 
possible combinations of variables %
; � = 1 … !. This is a so-called factorial design. It can 
easily be seen that the total number 2  of support points equals 2 = 0	 . This curse of 
dimensionality (exponential growth with dimension ! ) makes factorial designs virtually 
infeasible for complex problems. 

 
Figure 3: Design of experiments (DOE), left: Factorial design, center: Monte Carlo Sampling, right:Latin 

Hypercube Sampling 

Fig. 3 compares factorial design with Monte Carlo sampling and Latin Hypercube 
sampling.For practical applications, Latin Hypercube sampling (or similar methods based on 
low-discrepancy numerical sequences) provide a good compromise between accuracy and 
computational efficacy. 
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2.3Quality of metamodel 

Since the metamodel aims at predicting the behavior of a complex system in terms of very 
simple mathematical functions, it is of vital importance to ensure sufficient predictive quality 
of this metamodel. A first and simple quality measure is the coefficient of determination 
(CoD, 3�). This quantity measures the correlation between the actual data 4 and the model 
predictions 5: 

3� = 67[(4 − 4) ⋅ (5 − 5)]
;<;= >

�
= ?<=� ;  5 = � �


	



�
A
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One well-known problem with this measure is that the 3� -value may be high due to 
overfitting (which eventually leads to bad prediction behavior). If an additional test data set C 
is available, then a true measure for the prediction quality can be computed, which is herein 
called Coefficient of Quality (CoQ) 

CoQ = 67[(C − C) ⋅ (5F − 5F)]
;F;=G

>
�

= ?F=G
� ; 5F = � �


	



�
A
(BF);  0 ≤ CoQ ≤ 1 

In practical application it is useful to randomly split data into training set/test set and repeat 
the computation of the CoQ several times to obtain a stable statistical estimator of CoQ. This 
strategy allows to assess the variability of the CoQ at the same time such that confidence 
intervals can be provided. 
It should be noted that the CoQ is a global measure based on a correlation coefficient and 
should not be misconstrued as a valid measure for local errors of the response surface model. 

2.4Importance measures 

One very important type of information for optimization is the knowledge which variables are 
likely to have most influence on the objective function and/or constraints. Therefore 
importance measures are necessary. There are several possibilities, the most simple one is 
based on linear correlations. It turns out that this is suitable only for almost linear models. 
Here it is suggested to systematically investigate the dependence of the CoQ on the 
inclusion/exclusion of individual variables. The procedure can be summarized as follows: 
• Compute the CoQ for full model (all input variables) 
• Remove input variable %� from regression models, compute CoQ� for the reduced model 

and compute the drop in the CoQ J� = CoQ − CoQ� 

• Compute the normalized importance measure K� = LM
∑LM CoQ  Positive importance 

measures K�  indicate that variable %�  is important, negative measure indicate that this 
variable should be removed from the model. The sum of all importance measures equals 
the CoQ: ∑ K�	�
� = CoQ. 

If a variable with negative importance has been removed from the model, then the CoQ 
should increase. When the process of elimination is repeated until there are no more variables 
with negative importance, then this quite naturally leads to the Metamodel of Optimal Quality 
(MOQ). For numerical evaluation, these concepts are implemented in the software package 
slangTNG4. 

2.5Examples 

As a first example we consider a 3-dimensional test function given as5 
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 A = sin%� + 7sin�%� + 0.1%PQsin%� 

All variables are uniformly distributed in the range [−R, R]. This highly nonlinear function 
has been used in5 to demonstrate the use of Sobol indices for global sensitivity analysis. 
Based on a Latin Hypercube sampling with 500 samples, the Thin Plate Spline model yields a 
CoQ = 0.954 and importance measures K� = 0.416, K� = 0.366 and KP = 0.185. In order to 
compare these results to those given in5, both importance measures were normalized to a sum 
of 1. The comparison is shown in Table 1. The agreement is excellent. 
 

Variable Normalized Importance (CoQ) Normalized Importance5 %� 0.436 0.449 %� 0.383 0.357 %P 0.185 0.194 

Table 1: Relative importances using CoQ compared to exact results 

We then consider a 6-dimensional test function given as 

A = 0.5%� + %� + 0.5%�%� + 5sin%P + 0.2%Q + 0.1%U 

All variables are in the range [−R, R], the 6th variable %V does not appear in the function. A 
DOE with 100 samples (using Latin Hypercube Sampling) has been established, and the 
corresponding function values were computed. For the computation of the CoQ, the samples 
were split into training set and test set (30 times repeated random splitting with 67 samples for 
training set and 33 samples for the test set). Again, the response surface model chosen was 
Thin Plate Spline interpolation over the training set. 
Table 2 shows the linear correlations between the input variables and the function values 

together with the importance measures K� and the effect of successive elimination of variables 
with smallest importance on the CoQ. 

? K�(�) K�(�) K�(P) K�(Q) K�(U) 
0.07 0.13 0.11 0.11 0.11 n.a. 
0.52 0.30 0.33 0.25 0.25 0.19 
0.58 0.37 0.41 0.55 0.57 0.64 
0.06 -0.01 -0.07 -0.08 n.a. n.a. 
0.14 -0.06 -0.08 n.a. n.a. n.a. 
0.03 -0.06 n.a. n.a. n.a. n.a. 
CoQ 0.61 0.73 0.83 0.92 0.81 ;WXY 0.11 0.08 0.07 0.02 0.07 

Table 2: Importance measures for different order models 

The results show that the MOQ contains only the variables %�, %�, and %P. For this reduced 
model the CoQ reaches a value of CoQ = 0.92. The analysis has been repeated with a larger 
sample size of the DOE, i.e. 500 samples. The changes in the prediction quality and in the 
relative importance of the variables are shown in Table 3. It can be seen that the CoQ 
increases clearly. The relative importances of the variables did not change substantially, but 

the MOQ now also includes the variable %Q. 
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CoQ 0.918 0.964 0.986 0.985 0.822 ;WXY 0.010 0.006 0.002 0.002 0.021 

Table 3: CoQ for different order models, DOE with 500 samples  

Generally it should be stated that as the sample size increases more and more, then also the 
MOQ should contain more and more relatively unimportant variables. 

3 APPLICATION TO STRUCTURAL OPTIMIZATION 

3.1 Deterministic Problem 

In order to study the applicability of the concept as presented to a structural optimization 
problem consider a frame under static loads as shown in Fig. 4. The structure is a linear 
elastic plane frame under two static loads Z and [. It is represented by a simple finite element 
model using the software slangTNG4, possible loss of stability (buckling) is accounted for in 
the analysis. The objective is to minimize the structural mass subject to the constraints: 
• Horizontal deflection \ < \# 
• Vertical deflection ̂ < ^# 
• Buckling load factor applied to the nominal loads _ ≥ _# 

 
Figure 4: Frame structure with horizontal and vertical load 

The material parameters are a = 210 GPa and ? = 7850 kg/�P. The loads are Z = 100 kN and 

[ = 117 kN, the allowable deflections are \# = 0.05 m and ̂# = 0.05 m. The lower limit on 

the buckling load factor is _# = 2.5. 

Carrying out an optimization run with the standard gradient-based optimizer CONMIN6 

results in optimal cross sections b� = 0.082 m, b� = 0.069 m, bP = 0.137 m, bQ = 0.152 m. In 
this solution all constraints are active, i.e. the solution is located on the boundary of the 

feasible domain. The total structural mass is � = 1388 kg. This result was achieved with 100 
FE analyses.  

3.2 Stochastic Problem 

It is now assumed that the loads acting on the structure are independent random variables with 
mean values Z = 100 kN, [ = 117 kN and coefficients of variation of 5%. Apparently, the 
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constraints cannot be satisfied deterministically. Therefore the constraints now have to be 
satisfied with a prescribed reliability levels cd = ce = 3 for the displacements and cf = 4 for 
the buckling load factor. Two approaches are considered, the first one being the method of 
safety factors. This simply upscales the deterministic optimum cross sections such that all 
probabilistic constraints are satisfied. With a few repeated FE analysis this leads to a design 
with mass � = 1706 kg (increase of 23% as compared to the deterministic problem). 
The second approach is stochastic optimization (RBDO). Here the probabilistic constraints 
are directly included into the optimization process. The probabilities of constraint violation 
computed by FORM7. This very straightforward approach requires about 35.000 structural 
analyses. The number is so large because FORM internally solves another optimization 

problem. The optimal cross sections are determined to be b� = 0.081 m, b� = 0.076 m, bP = 

0.150 m, bQ = 0.171 m. The structural mass � = 1657 kg (19% increase as compared to the 
deterministic problem, and 4% less than the upscaling solution). 

3.3 Adaptive Response Surface Method (ARSM) 

The stochastic optimization requires a representation of the objective and the constraints as a 
function of both the design variables (i.e. the cross section widths b� ) and the stochastic 
variables (i.e. the loads [ and Z). Hence the response surfaces depend on 6 variables. Since 
initially it is not clear in general where in the design space the optimum will be located, an 
initial DOE with a very wide range for the variables is analyzed. Based on the response 
surface derived from this DOE an optimal solution is found. The DOE is then repeated by re-
centering around the optimum design and narrowing its range. The process is schematically 
shown in Fig. 5. 

 
Figure 5: Adaptive response surface method, re-centering and narrowing of DOE 

For the present example, an initial DOE with 256 structural analyses was established. All 
constraint functions were approximated by Metamodels of Optimal Quality and the stochastic 
optimization was carried out. The DOE was then re-centered around the optimum and its 
range narrowed by a factor of 0.7. This was repeated giving totally 4 iterations. The optimal 

design after these 4 iterations was b� = 0.083 m, b� = 0.078 m, bP = 0.144 m, bQ = 0.172 m 

with a total structural mass of � = 1665 kg. This result is not feasible because Constraint 1 is 
slightly violated. This violation is due to local errors inherent in the response surface 
approximation. It turns out that upscaling this solution by only 0.2% satisfies all constraints, 

and the structural mass becomes � = 1673 kg. Compared to the deterministic solution, this is 
an increase of 20.5%. Considering the computational demand it is seen that compared to full 
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stochastic analysis computation is reduced by a factor of 35. This is a very substantial gain in 
computational efficacy. Of course, even when using ARSM, the stochastic analysis is 
substantially more expensive than the deterministic analysis, in this case by a factor of 10. 
When comparing the desigsn from the full stochastic design optimization and the optimization 

based on the ARSM there is no visible difference, the structural mass �  differs by 
1.5%.Therefore it may be concluded that the response surface method is a tool which can help 
to carry out stochastic structural optimization in a fast an reasonably accurate way. 

4 CONCLUSIONS 

Stochastic structural optimization avoids highly specialized designs and therefore reduces 
imperfection sensitivity. It naturally includes statistical uncertainties into the design 
optimization process. Furthermore, it allows the inclusion of quality control measures 
(manufacturing, maintenance) into the design process. It is, however, computationally very 
expensive unless based on approximations such as response surface models. 
The paper developed a strategy to assess the quality of response surface models (the 
coefficient of quality, CoQ) and to identify important and unimportant design and stochastic 
variables. Based on this CoQ, metamodels of optimal quality (MOQ) can be established and 
utilized for structural optimization. Combining this with an adaptive method to successively 
refine the MOQ one can achieve excellent stochastic optimization results with moderate 
computational effort. 
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