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Abstract.Response surface models are frequently chosen to reduce computational cost for
structural optimization problems. These methods are also very popular for structural
reliability analysis. It is therefore not surprising that response surface models are very
attractive for reliability-based structural optimization. The paper discusses strategies to
obtain a suitable response surface model, to assess its quality concerning prediction, and to
use the response surface mode to identify important and unimportant variables. Selected
mathematical and structural examplesillustrate the applicability of the presented approach.

1INTRODUCTION

Due to the ever increasing demand on performandecast-efficacy of structures, the need
for numerical tools to optimize such structureshie design process has become very strong.
The computational demand arising from optimizatathods is quite heavy, and it is even
more increasing since various stochastic uncerggiritave to be taken into account in the
design optimization process (see 8.g.

The sources of uncertainties in structural optitniramay arise from several sources:

» Design variables (e.g. manufacturing tolerances)

«  Obijective function (e.g. tolerances, external fegjto

* Constraints (e.g. tolerances, external factors)

These sources are indicated in Fig. 1. For strattsafety issues, the main concern are

uncertainties in the constraints. This usually cerfrtem the uncertainties in the loads (e.qg.
wind or earthquakes). The traditional design apgrda take these unavoidable uncertainties
into account is the introduction of so-calleafety margins (cf. Fig. 2). One of the major
issues in establishing design procedures in codedbis the appropriate (and in a sense
optimal) definition of the safety margins.
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Figure 1: Uncertainties in Optimization
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Figure 2: Safety Margin in Optimization

2 RESPONSE SURFACE MODELS

2.1 Mathematical Formulation

The mathematical formulation for response surfasetosely related to linear regression and
interpolation modeling. A response surface modelb@sed on linear regression if its
functional form is linear in the unknown parametgysi.e.

n

100 = ) piefe®)
k=1

A regression model is constructed from a sequerfcéenmut valuesx; i =1..m and
corresponding model output valugsi = 1...m. The set of parametepg can be determined
by solving the least squares problem
m n 2
52= = Lol - Min.!
i=1 -

If the number of parametersis equal to the number of data pats then the regression
model becomes an interpolation model.

Global functions are functions not localizing irrteén areas (such as polynomials). Simple
examples are linear polynomial function
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n
mX) =po + Z Pk Xk
k=1

and the quadratic model

n n
Ng(X) =po + Zpkxk + Zzpkj X Xj

k=1 k=1 ]:1

Localized models represent the response in speeijions, such as radial basis functions
n

100 = ) e di(x %)
k=1

in which ¢, (y) = ¢ (|lyl]) = ¢x(r) are functions depending only on the magnitudehef t
vector argument amxl, are the localization points of the RBF functiotfsthe localization
points coincide with the data points, then this piad interpolating. Otherwise it is a linear
regression model. A typical example are thin pgnes for which the radial dependence is
modeled as

¢ (r) = r?logr

2.2Design of Experiments (DoE)

In order to establish the response surface, afsstiport points is needed. These points
should satisfy the following requirements:

*  Explore range of variables by numerical experiments

*  Cover range of all variables as uniformly as pdssib

»  Keep number of experiments small

An intuitive approach would be to divide each vhlgaintoM small intervals and cover all
possible combinations of variablesi = 1...n. This is a so-calledactorial design. It can
easily be seen that the total numbef support points equal§ = M™. This curse of
dimensionality (exponential growth with dimensia) makes factorial designs virtually
infeasible for complex problems.
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Figure 3: Design of experiments (DOE), left: Faigtbdesign, center: Monte Carlo Sampling, rightihat
Hypercube Sampling

Fig. 3 compares factorial design with Monte Carlampling and Latin Hypercube
sampling.For practical applications, Latin Hypereidgampling (or similar methods based on
low-discrepancy numerical sequences) provide a gaodpromise between accuracy and
computational efficacy.
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2.3Quality of metamodel

Since the metamodel aims at predicting the behadfi@ complex system in terms of very
simple mathematical functions, it is of vital imgance to ensure sufficient predictive quality
of this metamodel. A first and simple quality measis the coefficient of determination
(CoD, R?). This quantity measures the correlation betwdenactual dat¥ and the model
predictionsZ:
— — 2 n
E[((Y-Y)- (Z—-Z
o= (BP0
i=1

Oy0z

One well-known problem with this measure is tha¢ Bf-value may be high due to
overfitting (which eventually leads to bad predatibehavior). If an additional test data Bet
is available, then a true measure for the prediatjoality can be computed, which is herein
calledCoefficient of Quality (CoQ)
E[(T =T) - (Zr = Zr)

0r0z,

2 n
]
= przp Zr = Zpi gi(Xr); 0<CoQ <=1

i=1

COQ=<

In practical application it is useful to randomlglis data into training set/test set and repeat
the computation of the CoQ several times to obdastable statistical estimator of CoQ. This
strategy allows to assess the variability of theQCGa the same time such that confidence
intervals can be provided.

It should be noted that the CoQ is a global meabased on a correlation coefficient and

should not be misconstrued as a valid measur@dat brrors of the response surface model.

2.4l mportance measures

One very important type of information for optimiien is the knowledge which variables are

likely to have most influence on the objective fiime and/or constraints. Therefore

importance measures are necessary. There are Ispussdbilities, the most simple one is

based on linear correlations. It turns out thas tkisuitable only for almost linear models.

Here it is suggested to systematically investigte dependence of the CoQ on the

inclusion/exclusion of individual variables. Thepedure can be summarized as follows:

e Compute the CoQ for full model (all input variables

Remove input variable, from regression models, compueQ, for the reduced model
and compute the drop in the CdQ = CoQ — CoQy

e Compute the normalized importance measije= ZAT"COQ Positive importance
k

measures,, indicate that variable, is important, negative measure indicate that this
variable should be removed from the model. The etiall importance measures equals
the CoQ:Xx-; Ix = CoQ.
If a variable with negative importance has beenowsd from the model, then the CoQ
should increase. When the process of eliminatioepgated until there are no more variables
with negative importance, then this quite naturbdigds to the Metamodel of Optimal Quality
(MOQ). éor numerical evaluation, these conceptsimpmemented in the software package
slangTNG.

2.5Examples

As a first example we consider a 3-dimensionalftgsttion given as
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g = sinx; + 7sin?x, + 0.1x3sinx,

All variables are uniformly distributed in the rang-r, ]. This highly nonlinear function
has been usedrto demonstrate the use of Sobol indices for glateasitivity analysis.
Based on a Latin Hypercube sampling with 500 sasyphe Thin Plate Spline model yields a
CoQ = 0.954 and importance measukes 0.416,/, = 0.366 and; = 0.185. In order to
compare these results to those given foth importance measures were normalized to a sum
of 1. The comparison is shown in Table 1. The ages# is excellent.

Variable Normalized Importance (CoQ) Normalized Importahce

X1 0.436 0.449
X, 0.383 0.357
X 0.185 0.194

Table 1: Relative importances using CoQ compareskéat results
We then consider a 6-dimensional test function ga®
g = 0.5x; + x5 + 0.5x1x, + 5sinx; + 0.2x4 + 0.1x5

All variables are in the rande-m, ], the 6th variable, does not appear in the function. A
DOE with 100 samples (using Latin Hypercube Sangplinas been established, and the
corresponding function values were computed. Fercthmputation of the CoQ, the samples
were split into training set and test set (30 timegseated random splitting with 67 samples for
training set and 33 samples for the test set). Mghie response surface model chosen was
Thin Plate Spline interpolation over the trainirg. s

Table 2 shows the linear correlations between tipeiti variables and the function values

together with the importance measukgand the effect of successive elimination of vdeab
with smallest importance on the CoQ.

PR S SO S S %
0.07 0.13 0.11 0.11 011 n.a.
052 0.30 0.33 0.25 0.25 0.19
058 0.37 041 0.55 057 0.64
0.06 -0.01 -0.07 -0.08 n.a. n.a.
014 -0.06 -0.08 n.a. n.a. n.a.
0.03 -0.06 n.a. n.a. na. na.
CoQ 0.61 0.73 0.83 092 0.81
Ocoq 0.11 0.08 0.07 0.02 0.07

Table 2: Importance measures for different ordedet®

The results show that the MOQ contains only theabéesx,, x,, andx;. For this reduced
model the CoQ reaches a value of CoQ = 0.92. Thé/sis has been repeated with a larger
sample size of the DOE, i.e. 500 samples. The @wmangthe prediction quality and in the
relative importance of the variables are shown abl& 3. It can be seen that the CoQ
increases clearly. The relative importances ofvidagables did not change substantially, but
the MOQ now also includes the variahilg
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CoQ 0.918 0.964 0.986 0.985 0.822
0coq 0.010 0.006 0.002 0.002 0.021

Table 3: CoQ for different order models, DOE witl05samples

Generally it should be stated that as the sampke iscreases more and more, then also the
MOQ should contain more and more relatively uningotr variables.

3APPLICATION TO STRUCTURAL OPTIMIZATION

3.1 Deter ministic Problem

In order to study the applicability of the conceyst presented to a structural optimization
problem consider a frame under static loads as showFig. 4. The structure is a linear
elastic plane frame under two static lo&bandV . It is represented by a simple finite element
model using the software slangTR@ossible loss of stability (buckling) is accouhfer in
the analysis. The objective is to minimize the&ttal mass subject to the constraints:

e Horizontal deflectioru < u,

*  Vertical deflectiorw < w,

*  Buckling load factor applied to the nominal loadz A,

d
H 2
u—c={

<
s <t——
o
&

Figure 4: Frame structure with horizontal and eaitioad

The material parameters a@fe= 210 GPa ang = 7850 kgm3. The loads ar& = 100 kN and
V =117 kN, the allowable deflections arg= 0.05 m andv, = 0.05 m. The lower limit on
the buckling load factor i, = 2.5.

Carrying out an optimization run with the standapgdient-based optimizer CONMIN
results in optimal cross sectiodg = 0.082 md, = 0.069 md; = 0.137 md, = 0.152 m. In
this solution all constraints are active, i.e. g@ution is located on the boundary of the
feasible domain. The total structural massiis 1388 kg. This result was achieved with 100
FE analyses.

3.2 Stochastic Problem

It is now assumed that the loads acting on the&tre are independent random variables with
mean value$ = 100 kN,V = 117 kN and coefficients of variation of 5%. Apgatly, the
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constraints cannot be satisfied deterministicallgerefore the constraints now have to be
satisfied with a prescribed reliability levels = 5, = 3 for the displacements afigl= 4 for

the buckling load factor. Two approaches are cameil the first one being the method of

safety factors. This simply upscales the determmigptimum cross sections such that all

probabilistic constraints are satisfied. With a feepeated FE analysis this leads to a design
with massn = 1706 kg (increase of 23% as compared to therdatestic problem).

The second approach is stochastic optimization (@BDHere the probabilistic constraints

are directly included into the optimization proceshe probabilities of constraint violation
computed by FORNI This very straightforward approach requires at@®000 structural
analyses. The number is so large because FORMnatiersolves another optimization
problem. The optimal cross sections are determiadeed; = 0.081 md, = 0.076 md; =
0.150 md, = 0.171 m. The structural mass= 1657 kg (19% increase as compared to the
deterministic problem, and 4% less than the upsgalolution).

3.3 Adaptive Response Surface Method (ARSM)

The stochastic optimization requires a represemtaif the objective and the constraints as a
function of both the design variables (i.e. thessr@ection widthd,) and the stochastic
variables (i.e. the loadé andH). Hence the response surfaces depend on 6 vaidhilece
initially it is not clear in general where in thesign space the optimum will be located, an
initial DOE with a very wide range for the variables analyzed. Based on the response
surface derived from this DOE an optimal solutisridund. The DOE is then repeated by re-
centering around the optimum design and narrowisigange. The process is schematically
shown in Fig. 5.

Figure 5: Adaptive response surface method, reecieigt and narrowing of DOE

For the present example, an initial DOE with 25@cural analyses was established. All
constraint functions were approximated by Metam®d&lOptimal Quality and the stochastic
optimization was carried out. The DOE was thenartered around the optimum and its
range narrowed by a factor of 0.7. This was regegieng totally 4 iterations. The optimal
design after these 4 iterations whs= 0.083 mgd, = 0.078 md; = 0.144 md, = 0.172 m
with a total structural mass ef = 1665 kg. This result is not feasible becausesGamt 1 is
slightly violated. This violation is due to localrers inherent in the response surface
approximation. It turns out that upscaling thisusioin by only 0.2% satisfies all constraints,
and the structural mass becomes 1673 kg. Compared to the deterministic soluttbis is

an increase of 20.5%. Considering the computatideailand it is seen that compared to full
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stochastic analysis computation is reduced by @rfaxt 35. This is a very substantial gain in
computational efficacy. Of course, even when usikigSM, the stochastic analysis is
substantially more expensive than the determinestialysis, in this case by a factor of 10.
When comparing the desigsn from the full stocha$tgign optimization and the optimization
based on the ARSM there is no visible differendee structural mass differs by
1.5%.Therefore it may be concluded that the respsngface method is a tool which can help
to carry out stochastic structural optimizatioraifast an reasonably accurate way.

4 CONCLUSIONS

Stochastic structural optimization avoids highlyeaplized designs and therefore reduces
imperfection sensitivity. It naturally includes ss$tical uncertainties into the design

optimization process. Furthermore, it allows thelusion of quality control measures

(manufacturing, maintenance) into the design pmacksis, however, computationally very

expensive unless based on approximations suclspsnse surface models.

The paper developed a strategy to assess the ygudlitesponse surface models (the

coefficient of quality, CoQ) and to identify impartt and unimportant design and stochastic
variables. Based on this CoQ, metamodels of optgnality (MOQ) can be established and
utilized for structural optimization. Combining shwith an adaptive method to successively
refine the MOQ one can achieve excellent stochagpiimization results with moderate
computational effort.
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