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Abstract.This paper reviews two recent theoretical developments which drastically speed the solution of 
uncertainty propagation problems using the Neumann series, with application to structural mechanics. The 
Neumann method consists in approximation the inverse of the systems stiffness matrix by an infinite series. 
Approximate solutions of converging accuracy are obtained by truncating the series. The first result is based on 
unexplored properties of the Neumann series, and allows establishing bounds for the realizations of the response 
process. The second result derives from an error minimization problem, obtained by comparing the true stiffness 
matrix inverse to a first-order Neumann approximation of the same inverse. A lambda (λ) factor is introduced, 
and employed to solve the error minimization problem. An analytical solution is obtained, which efficiently 
yields very accurate results for a first order Neumann approximation of the stiffness matrix inverse. Novel 
results, exploring synergies between these two solutions, are also described herein. The three novel methods, as 
well as the two original, are applied in the solution of stochastic plate bending problem, with Winkler and 
Pastenak types of foundation. These unpublished results confirm that the Neumann-λmethod provides very 
accurate results, at a fraction of the cost of pure Monte Carlo simulation.  

1 INTRODUCTION 

The Monte Carlo simulation method remains a popular, yet computationally expensive tool 
for analyzing uncertainty propagation problems in mechanics. The computational cost of 
Monte Carlo simulation can easily become prohibitive, for highly non-linear problems and 
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complex geometries. More efficient, intrusive methods have recently been developed, such as 
the stochastic finite element method [1] or stochastic Galerkin Method [2-6]. Intrusive 
methods have the inconveniency of requiring full re-programming of conventional finite 
element software. Hence, non-intrusive Monte Carlo simulation methods remain popular in 
the solution of stochastic mechanics problems. 

 In linear stochastic mechanics, the numerical solution of a differential equation is 
replaced by the solution of a linear system of algebraic equations (stiffness matrix). When 
Monte Carlo simulation is employed, for each system realization, the stiffness matrix needs to 
be inverted. The Neumann series can be used is to replace the matrix inversions by a truncated 
series expansion. However, depending on the number of terms in the Neumann series, the 
number of operations to be performed may become larger than for the actual matrix inversion.  

 The Neumann series has been employed in the solution of uncertainty propagation 
problems in mechanics by a number of authors [7-16]. However, all these applications use the 
Neumann expansion in a conventional way. Recently, Avila and co-workers [17-20] shed new 
light on the method, presenting two results for speeding up solution of uncertainty 
propagation problems using the Neumann expansion. In this paper, these results are reviewed 
and compared, and synergies between the two results are explored. Three derived, combined 
methods are also proposed.  

2 MATHEMATICAL FORMULATION 

2.1 Uncertainty propagation 

In this paper, linear elliptic boundary value problemsare addressed; such operators appear in 
beam and plate bending problems, or in stationary head conduction problems. The stochastic 
uncertainty propagation problem is defined in a ( ), ,PΩ F  probability space, where Ω is the 

sample space, F is a σ-algebra of events, and P is a probability measure. The linear stochastic 
uncertainty propagation problem solved herein is stated as: 
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where ( ),f ⋅ ⋅ is a source term. The random character of the solution is given by the set of 

coefficients αβκ . In solid mechanics problems, these coefficients can be associated to stiffness 

or thermal conductivity. In order to warrant existence and uniqueness of the solution to Eq. 
(1), somehypotheses are required on its coefficients, as detailed in [2-6]. 
 In this paper, the Galerkin method is used to obtain approximated numerical solutions 
based on the Abstract Variational Problem (AVP) derived from Eq. (1). Details can be found 
in [17-20]. With the Galerkin formulation, and for the kth realization of system parameters, a 
linear system of algebraic equations is obtained: 
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where ( )( ) ( )k mαβ ω ∈ ℝξ MK is a stiffness matrix, 
m

∈ℝF is the source term or load vector, 

and ( )( )kαβ ωU�ξ is a vector whose entries are coefficients of a linear combination.In Eq. (2), 

( )kαβ ωξ  are random vectors which represent the uncertainty in αβκ . Formally, solution to the 

linear system of equations in Eq. (2) is given by: 

( ) ( )( ) ( )1

αβ αβ αβ

−
= =U� K F H Fξ ξ ξ ,       (3) 

wherematrix ( ) ( )ij m m
hαβ αβ ×
 =  H ξ ξ is the inverse of stiffness matrix ( )αβK ξ . The 

approximated Galerkin solution becomes: 
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where :
m

D →ℝΦ is a vector, whose entries are the Galerkin interpolating functions.  
 Based on Monte Carlo simulation, estimates for expected value and variance of random 

system response are obtained from the ensemble of system realizations, ( ){ }
1

,
N

k
mu x

=
αβξ . For 

each realization of system response (Eq. 4), the inverse of the stiffness matrix, ( )⋅H , needs to 

be computed. Iterative methods, such as Jacobi, Gauss-Seidell, Conjugated Gradients, among 
others, can be used [21]. However, the direct Monte Carlo solution can become prohibitive, 
due to the large number of system realizations which need to be computed. Under certain 
conditions, one alternative to reduce the computational burden is use of the Neumann series.  

2.2 The Neumann series 

The version of the Neumann series to be employed in this article refers to a linear operator, 
defined in a space of finite dimension. This operator is the stiffness matrix n n: →ℝ ℝK  
which, for the kth sample of coefficients, admits the following decomposition: 
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whereI  is the identity matrix, ( ) ( )mαβ ∈ ℝP ξ M and ( ) ( )
m m

ijp
×αβ αβ 

 =P ξ ξ . The entries of 

matrix 0K are evaluated from expected values of the coefficients,
αβκµ . Replacing Eq. (5) in 

Eq. (4), a formal solution ( )αβ=U U�ξ  is obtained as: 
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u u =  …U . From the Neumann series theorem [22], 
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 Truncating the Neumann seriesin the nth term, and after some manipulations, one 
obtains the following approximate solution: 
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3 RECENT DEVELLOPMENTS 

3.1 Bounds on samples of system response 

Based on properties of the Neumann expansion and classical results of algebra, a 
methodology was proposed in [17,18] to derive lower and upper bounds for samples of the 
response process. The main ideas were: to avoid direct computation of the linear system of 

equations (Eq. 4) and to obtain an approximated solution, ( ),mn mnu u x αβ= ξ , using a truly 

small (n=0 or n=1) number of terms in the Neumann expansion.  

 If the set of parameter samples, ( )( ){ }
1

,
N

k k
x

=αβ αβκ ωξ , are such 

that ( )( ) { }0 1, 1, ,k k ... Nαβ< ω < ∀ ∈P ξ ; then the numerical approximations to the response 

fields can be represented in terms of the Neumann series using matrix ( )( ) 1−

αβ+ ξI P . For the 

kth response realization, and for a fixed x D∈ , the distance between response  realizations 
obtained by direct Monte Carlo, Eq. (4), and by the Neumann series, Eq. (7), becomes: 
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Based on properties of the Neumann series [17-20],this distance can be written as: 
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 Eq. (10) can be rewritten to yield lower( ),α ⋅ ⋅  and upper ( ),β ⋅ ⋅  bounds, for the kth 

sample of the response process: 

( ) ( ) ( ) ( ) ( ), , , , , , , ;mx x x x D Puαβ αβ αβ αβα ≤ β ∀ ∈ × Ω≤ξ ξ ξ ξ F    (12) 

with: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

0

0

, , , ,

, , , , , , , .

mn

mn

x x n x

x x n x x D P

u

u

αβ αβ αβ

αβ αβ αβ αβ

α = + λ

β = − λ ∀ ∈ × Ω F

ξ ξ ξ

ξ ξ ξ ξ

Φ

Φ

U

U

  (13) 

 With the functions in Eq. (13), and from the ensemble of realizations of lower and 

upper bounds of system realizations, ( )( ) ( )( ){ }
1

,, ,
N

k
k kx x

=
αβ αβα βω ωξ ξ , it is possible to 

obtain lower and upper bounds for  expected value and autocorrelation of the response 
process. 
 The coefficient ( ),λ ⋅ ⋅ in aboveequationsdepends on the number of terms ("n") used in 

the Neumann series for matrix ( )( ) 1−

αβ+I P ξ , and on the computation for the normP . 

Using the Euclidian norm, the computational cost can become quite large, turning the 
procedure useless. In order to circumvent this difficulty, the authors [17,18] resorted to the 
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equivalence between matrix norms [22]. Based on this equivalence, five alternatives were 
proposed in [17,18] to evaluate P and the coefficient " "λ : norm one, theEuclidian norm, 

the infinity norm, theFrobenius norm and the maximum norm. Results obtained for beam 
bending in [17], and for axial thermo-elasticity in [17, 18], for random fields αβξ with 

coefficient of variation of 10%, and using one or two terms in the Neumann expansion (n=0 
or n=1), confirms that using the Euclidian norm leads to the most accurate, yet 
computationally expensive results. A good compromise between accuracy and efficiency was 
obtained using the Frobenius norm, with errors in expected values between -2% and 3%, and 
errors in auto-correlation between -4% and 6%. 

3.2 The lambda (λ) convergence factor 

Based on the solution of a distance minimization problem, very accurate and efficient results 
were obtained in [19, 20] using a low-order (n=1) Monte Carlo-Neumann solution. The 
distance (error) to be minimized was called λ; hence the methodology was called the Monte 
Carlo-Neumannwith λ convergence, or simply MC-N λ method. A one-dimensional version 
of the methodology was presented in [19]. The most accurate, two-dimensional version [20] is 
reproduced here.  

 Consider the kth sample of coefficients ( )( ), kxαβ αβκ ωξ such that ( )( )0 1kαβ< ω <P ξ . 

From Eq. (7), the nth order representation, via Neumann series, of the inverse is given by, 

( )( )( )
( )( )1

0

n q

n
q

.
−

=
αβ αβ− =∑I P Pξ ξ

       

(14) 

From the definitions in Eqs. (6) and (14), the inverse of the stiffness matrix is given by: 
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It is evidentthat ( )( ) ( )1−

αβ αβ =K K Iξ ξ ; however, this identity does not hold exactly when 

an approximation of the inverse, such as Eq. (15), is used. Hence, one can write: 
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In Eq. (16), matrix ( ) ( )mn ∈ ℝE M  reveals how much the inverse approximation( )( )( )

1

n

−

αβK ξ , 

when multiplied by the true inverse, departs from the identity matrix. Since use of the 
Neumann series is motivated by reduction of computation cost, it was proposed in [19, 20] to 
formulate the problem for the first order Neumann approximation, with n=1. Nevertheless, 
higher order approximations could be pursued as well. For the first order approximation, and 
after some algebra, the following distance minimization problem can be stated [20]: 
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where ⋅  is the Euclidian norm in
n
ℝ . The objective function in Eq. (19) is non-negative and 

convex; hence the global optimum is obtained from stationarity conditions [23]: 
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where 
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Hence, by the proposed MC-N λ method, with n=1,the kth realization of system response is: 
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∗ ∗ ∗= λ + λU � I P Uλ ξ ξ       (22) 

Replacing Eq. (22) in Eq. (8), one obtains: 
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where ( )1 , ,mu ∗⋅ ⋅λ is the numerical approximation of the solution, based on the first orderλ 

convergence parameter. 
 The Neumann-λmethod proposed in [19, 20] was shown to lead to almost exact 
solutions, with very small computational costs. In [19], the one-dimensional version of the 
method was applied to axial reaction-diffusion problems. Considering a random membrane 
stiffness, with coefficient of variation of up to 30%, the error in expected value was of 0.7%, 
and the error in variance was of up to 4%. These errors were shown to be smaller than the 
errors for a conventional, Monte Carlo - Neumann solution with n=5, but much cheaper to 
compute.  
 In ref. [20], the two-dimensional version of the method, presented in this section, was 
applied to stochasticEulerBernoullibeambendingproblems. The coefficient of variation of 
beam bending stiffness was up to 30%. The errors in expected value and variance were shown 
to be smaller than 0.1%  and 1%, respectively; these errors are much smaller than errors of a 
conventional MC-Neumann solution with n=5, yet faster to compute! 

4 NEW DEVELOPMENTS AND RESULTS 

Kist [24] investigated possible synergies between the results presented in Section 3. The 
author developed one variant of the bounding method, and two new methods combining the 
Neumann bounds with the λ convergence parameter. These three methods, plus the original 
two, were applied to problems of stochastic Kirchhoff plate bending.  
 The first result employs the Cauchy-Schwartz inequality to the difference between the 
Galerkin solution (Eq. 4) and its Neumann series approximation (Eq. 8), as stated in Eq. (9). 
Following a development similar to Section 3.1, the author arrives at improved bounds for the 
realizations of system responses. 
 The second result in [24] assumes that the first order Neumann series can be 
approximated  by the one-dimensional approximation of ref. [19]: 
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( )( )( )
( )1

1

−

αβ αβ
∗− = + αξ ξI P I P , where ∗α  is a parameter to be determined. This solution 

leads to different bounds for system response, following section 3.1, and is called Mixed 1D 
in the comparisons below. 
 The third result by [24] assumes that the first order Neumann series can be 

approximated by: ( )( )( )
( )1

1 21

−

αβ αβ
∗ ∗− = λ + λξ ξI P I P ,following [20], and uses this result to 

construct bounds for system response, following section 3.1. This solution is called Mixed2D 
in the sequence. 
  
 The three methods developed in [24], plus the two original methods in [17-20] were 
applied in [24] to the solution of stochastic Kirchhoff plate bending problems, withWinkler  
and Pasternak-type foundations. These results are summarized in Table 1, which gives further 
insight into the methods. The results refer to problem variants with uncertain plate and/or 

foundation stiffness, and with different coefficients of variation ( σδ = µ ). All error measures 

reported herein are maximum errors obtained in the problem domain, computed in 
comparison to direct Monte Carlo simulation. For all bounding solutions, results are reported 
for the Euclidian norm. Computation times for bound solutions were similar between 
Euclidian and Frobenius norms, and approximately one-third of the computation time for 
direct MC simulation. Also, results obtained for the three methods proposed in [24] were 
similar when computed using Euclidian or Frobenius norms. 
  

Table 1: Comparison of results for five different solutions of plate bending problems. 

Problem Solution method Error in 
Mean (%) 

Error in 
Variance (%) 

Random plate stiffness, 0 1.κδ = , 

Winkler  foundation 

MC-N-λ 0.19 0.04 
Bounds ± 2.0 ± 16.0 

Improved bounds ± 2.0 ± 4.0 
Mixed 1D ± 0.5 ± 0.9 
Mixed 2D ± 0.2 ± 0.5 

Random foundation stiffness, 
0 5w .κδ = , Winkler  foundation 

MC-N-λ 0.9 10-6 1.8 10-6 
Bounds ± 330 10-6 ± 700 10-6 

Improved bounds ± 210 10-6 ± 400 10-6 
Mixed 1D ± 12.0 10-6 ± 24.0 10-6 
Mixed 2D ± 4.0 10-6 ± 8.0 10-6 

Random plate stiffness, 0 1.κδ = , 

Pasternak foundation 

MC-N-λ 0.05 0.1 
Mixed 2D ± 0.25 ± 0.5 

Pasternak foundation, random 
plate and foundation stiffness, 

0 1p w .α κ κδ = δ = δ = ,  

MC-N-λ 0.04 0.2 
Bounds ± 9.0 ± 18.0 

Improved bounds ± 2.0 ± 4.0 
Mixed 1D ± 0.5 ± 1.0 
Mixed 2D ± 0.25 ± 0.5 

 
 First, it is observed that the Monte Carlo – Neumann λ method yields very accurate 
results for all plate-bending problems addresses in [24], also for a problem with very large 
Winkler  foundation stiffness ( 0 5w .κδ = ). The original bounds proposed in [17,18] lead to 

large deviations from reference results, with errors of up to ±9% in the mean, and up to ±18% 
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in variances. Also, for the large foundation stiffness problem ( 0 5w .κδ = ), the errors obtained 

via bounds are significantly larger than for the other methods. The improved bounds proposed 
in [24] provide better results, in comparison to the original, but the improvements are 
insignificant w.r.t. to quality of other solutions.   
 The mixed formulations provided good results but, again, the accuracy of such results is 
not as good as the accuracy of the original, two-dimensional version of the Monte Carlo – 
Neumann λ method [19,20]. The 2D mixed formulation provided more accurate solutions 
than its one-dimensional counterpart, as expected.  

5 CONCLUSION 

This paper reviewed two recent theoretical results, regarding application of the Neumann 
series in solution of uncertainty propagation problems in mechanics, and explored synergies 
between these solutions. The first result, based on unexplored properties of the Neumann 
series, allows establishing lower and upper bounds for the realizations of the response 
process.The second result derives from a minimization of the error obtained by multiplying 
the true stiffness matrix by a first-order Neumann approximation of its inverse. The deviation 
of this internal product from the identity matrix yields aλ factor, which can be solved 
analytically to yield very accurate and low-cost solutions. Three derived results were also 
presented: improved bounds for system responses, and two mixed formulations, were one-
dimensional and two-dimensional λ factors are used to compute response bounds. The five 
methods were employed in solution of stochastic plate bending problem, with Winkler and 
Pastenak types of foundation. Results show that the improved bounds are better than the 
original, but still present large errors in mean and standard deviations of the response,for 
some problems. The mixed formulations provided interesting and accurate bounding results, 
in comparison to the original and improved bounds. However, these bounding solutions are 
not as accurate or efficient as the original 2D Neumann-λ method [19,20], which also yielded 
very accurate results for all plate bending problems addressed herein.  These new results 
confirm that the Neumann-λ is a powerful method for the solution of uncertainty propagation 
problems in mechanics. Synergies between this and other methods of uncertainty propagation, 
such as perturbation, stochastic FEM, etc., are yet to be explored.  
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