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Abstract.This paper reviews two recent theoretical developments which drastically speed the solution of
uncertainty propagation problems using the Neumann series, with application to structural mechanics. The
Neumann method consists in approximation the inverse of the systems stiffness matrix by an infinite series.
Approximate solutions of converging accuracy are obtained by truncating the series. The first result is based on
unexplored properties of the Neumann series, and allows establishing bounds for the realizations of the response
process. The second result derives from an error minimization problem, obtained by comparing the true stiffness
matrix inverse to a first-order Neumann approximation of the same inverse. A lambda ()) factor is introduced,
and employed to solve the error minimization problem. An analytical solution is obtained, which efficiently
yields very accurate results for a first order Neumann approximation of the stiffness matrix inverse. Novel
results, exploring synergies between these two solutions, are also described herein. The three novel methods, as
well as the two original, are applied in the solution of stochastic plate bending problem, with Winkler and
Pastenak types of foundation. These unpublished results confirm that the Neumann-Amethod provides very
accurate results, at a fraction of the cost of pure Monte Carlo simulation.

1 INTRODUCTION

The Monte Carlo simulation method remains a popyketr computationally expensive tool
for analyzing uncertainty propagation problems iechmanics. The computational cost of
Monte Carlo simulation can easily become prohibitifor highly non-linear problems and
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complex geometries. More efficient, intrusive methdave recently been developed, such as
the stochastic finite element method [1] or stotha&alerkin Method [2-6]. Intrusive
methods have the inconveniency of requiring fulpregramming of conventional finite
element software. Hence, non-intrusive Monte Canfoulation methods remain popular in
the solution of stochastic mechanics problems.

In linear stochastic mechanics, the numerical tewiuof a differential equation is
replaced by the solution of a linear system of lalgie equations (stiffness matrix). When
Monte Carlo simulation is employed, for each systesalization, the stiffness matrix needs to
be inverted. The Neumann series can be used éplace the matrix inversions by a truncated
series expansion. However, depending on the numib&rms in the Neumann series, the
number of operations to be performed may becongetdahan for the actual matrix inversion.

The Neumann series has been employed in the @olofi uncertainty propagation
problems in mechanics by a number of authors [7H6Jever, all these applications use the
Neumann expansion in a conventional way. ReceAthfa and co-workers [17-20] shed new
light on the method, presenting two results for eslyeg up solution of uncertainty
propagation problems using the Neumann expansiotiig paper, these results are reviewed
and compared, and synergies between the two remeltexplored. Three derived, combined
methods are also proposed.

2 MATHEMATICAL FORMULATION

2.1 Uncertainty propagation

In this paper, linear elliptic boundary value pexbkare addressed; such operators appear in
beam and plate bending problems, or in stationaadiconduction problems. The stochastic

uncertainty propagation problem is defined il(‘uQa,F,P) probability space, wher@ is the

sample spacefF is ac-algebra of events, ariRlis a probability measure. The linear stochastic
uncertainty propagation problem solved hereinatest as:

Find uL*(Q,7,P;(H*"(D)NH{(D))), suctthat
> 0, (Kapdp u(x ) = f (x,0),0(x,0)0Dx(Q,F,P), a.e. (1)
ol

subject to boundary conditions.
wheref (Dj]is a source term. The random character of the isalus given by the set of

coefficientsk . In solid mechanics problems, these coefficieatsloe associated to stiffness

or thermal conductivity. In order to warrant exrste and uniqueness of the solution to Eq.
(1), somehypotheses are required on its coeffisjexd detailed in [2-6].

In this paper, the Galerkin method is used toioldaproximated numerical solutions
based on the Abstract Variational Problem (AVP)wt from Eq. (1). Details can be found
in [17-20]. With the Galerkin formulation, and ftire K" realization of system parameters, a
linear system of algebraic equations is obtained:

For fixed{&,, (ca,)} find 24(E,, (w,))OR" such tha

(& (00)) U(Eg () = 7 2)
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whereiC(&,, (0 ) OM,, (R)is a stiffness matrixF OR " is the source term or load vector,

andu(f,uﬁ(wk))is a vector whose entries are coefficients of adincombination.In Eq. (2),
&ap (wk) are random vectors which represent the uncertainky,,. Formally, solution to the
linear system of equations in Eq. (2) is given by:

U(E)= (&) F = H(E) 7 ©
wherematrix ’H(EGB) =[hj (EGB)]Wmis the inverse of stiffness matriij(E,uB). The
approximated Galerkin solution becomes:

U (%) = Zi(h (8op) /)01 () = (F 7 (820 ) (¥). @

where®:D - R"is a vector, whose entries are the Galerkin infatpay functions.

Based on Monte Carlo simulation, estimates foreeigd value and variance of random
N

system response are obtained from the ensembigstaing realizations{,um(X,EaB)} . For
k=1

each realization of system response (Eq. 4), therge of the stiffness matr'rﬂ([)], needs to

be computed. Iterative methods, such as Jacobsssaeidell, Conjugated Gradients, among
others, can be used [21]. However, the direct M@ddo solution can become prohibitive,
due to the large number of system realizations kwimeed to be computed. Under certain
conditions, one alternative to reduce the compartatiburden is use of the Neumann series.
2.2 The Neumann series

The version of the Neumann series to be employedtisnarticle refers to a linear operator,

defined in a sEace of finite dimension. This opmras the stiffness matri¥C: R" - R"
which, for thek™ sample of coefficients, admits the following degmsition:

e K (8es) = 1o (Z - P (&ep) .
FEITEE) = oy« ) o) ®

whereZ is the identity matrix,P(E,aB) OM,,(R)and P (&) = [ of (EGB)J . The entries of
matrix IC,are evaluated from expected values of the coelfﬁsia,(w. Replacing Eqg. (5) in

Eq. (4), a formal solutiot = u(zaﬁ) is obtained as:

u(zas):(K(Euﬁ))_lj::(z'?(zas)) lz/‘o’ (6)
Withuo:(lco)_l.’l-‘and %:[uf,...,uﬁjt. From the Neumann series theorem [22],
it0<|P(&)

(I_P(Euﬁ))_lzg(P(EaB))q' (7)

Truncating the Neumann seriesin th8 term, and after some manipulations, one
obtains the following approximate solution:

‘ <1, then E(I —’P(E(,B))_1 OM,,(R)and:
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umn(x,aas):i 3 (P (8 )u0) 0, (1) = (o) 32 (P (E20)) D (4): ®)

i=1 j=19g=0 g=0

3 RECENT DEVELLOPMENTS

3.1 Bounds on samples of system response

Based on properties of the Neumann expansion aadsichl results of algebra, a
methodology was proposed in [17,18] to derive loaed upper bounds for samples of the
response process. The main ideas were: to avadtdiomputation of the linear system of

equations (Eqg. 4) and to obtain an approximatedtisol, U, :um(X,EaB), using a truly
small =0 orn=1) number of terms in the Neumann expansion.

N

If the set of parameter samp d,B(X,EGB(wk))}k:l, are  such

thatO<HP(EGB(wk))H<1,Dk 0{1,..N}; then the numerical approximations to the response

-1
fields can be represented in terms of the Neumanassusing matri€<Z+’P(EGB)) . For the

K" response realization, and for a fixedI D, the distance between response realizations
obtained by direct Monte Carlo, Eq. (4), and byN®eimann series, Eq. (7), becomes:

(U =Un) (% ep)| < 2 [P (&) Tl@ 09 ©

Based on properties of the Neumann series [17H@listance can be written as:

n+l

[P (85) |
1P (2 )
Eq. (10) can be rewritten to yield |0WB(”|:|:)] and uppe[B(E[)] bounds, for thek"
sample of the response process:

0 (% o) S Up (X, Eop) SB(%.Eup) (X Eqp ) IDX(Q.F P) ; (12)
with:

o (% Eop ) = Unm (X Eap) + A (N Eqp )o@ (X)]

B(%&ap) = Unm (X.Eap) 2 (0. Eog || P (¥)]. 0% &ep ) ODx(Q.F P).
With the functions in Eq. (13), and from the enbmof realizations of lower and

‘(um —um)(x,EaB)‘ <A (n,EqB)”uO”HCI)(X)H ;where\ (n EGB) = (10)

(13)

N
upper bounds of system realizatiOI{a(x,EaB(ook)),B(x,EaB(ook))} , It is possible to

k=1
obtain lower and upper bounds for expected val@ autocorrelation of the response
process.

The coefficientx(Dj]in aboveequationsdepends on the number of termi} ({sed in
-1
the Neumann series for matr(>I+P(EaB)) , and on the computation for the ndRy .

Using the Euclidian norm, the computational cosh decome quite large, turning the
procedure useless. In order to circumvent thidadilty, the authors [17,18] resorted to the
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equivalence between matrix norms [22]. Based os dguivalence, five alternatives were
proposed in [17,18] to evaluajéP|and the coefficient A" : norm one, theEuclidian norm,

the infinity norm, theFrobenius norm and the maximoorm. Results obtained for beam
bending in [17], and for axial thermo-elasticity [b7, 18], for random fieldsg,, with

coefficient of variation of 10%, and using one wotterms in the Neumann expansios({

or n=1), confirms that using the Euclidian norm leads the most accurate, yet
computationally expensive results. A good comprentistween accuracy and efficiency was
obtained using the Frobenius norm, with errorsxipeeted values between -2% and 3%, and
errors in auto-correlation between -4% and 6%.

3.2 The lambda §) convergence factor

Based on the solution of a distance minimizatiawbfgm, very accurate and efficient results
were obtained in [19, 20] using a low-order=1) Monte Carlo-Neumann solution. The
distance (error) to be minimized was callechence the methodology was called the Monte
Carlo-Neumannwith. convergence, or simply MC-N method. A one-dimensional version
of the methodology was presented in [19]. The mostirate, two-dimensional version [20] is
reproduced here.

Consider th&" sample of coefficients, (x, £, (e, )) such thatO<HP(EaB(wk))H <1
From Eq. (7), the™ order representation, via Neumann series, ofrtherse is given by,

(Z-P (&), = 2 (P (50))" (14)
From the definitions in Egs. (6) and (14), the mseeof the stiffness matrix is given by:
(1Y = (2 =P (8ea))  (0) "= 2P (8s))" (1) (15)

It is evidentthat(lc(EGB))_lK(EuB) = T ; however, this identity does not hold exactly when
an approximation of the inverse, such as Eq. ($3)sed. Hence, one can write:

(1C(8s)), K (s) = (TP (), (Z - P(8s)) = Z -5 (Eas): (16)

In Eq. (16), matrix&, OM,,(R) reveals how much the inverse approxima(ﬂérﬁiaﬁ))

-1

(n)’
when multiplied by the true inverse, departs frdme identity matrix. Since use of the
Neumann series is motivated by reduction of contmrtaost, it was proposed in [19, 20] to
formulate the problem for the first order Neumampraximation, withn=1. Nevertheless,
higher order approximations could be pursued a& Wet the first order approximation, and
after some algebra, the following distance minimaraproblem can be stated [20]:

Find (A7 A3) OR? such that

()\15,)\2) =arg min{(%)
(MR

wherd|[ll is the Euclidian norm iR . The objective function in Eq. (19) is non-negatand
convex; hence the global optimum is obtained freati@garity conditions [23]:

(O, F)(ADAD) =0 = AT=E8e; \j=oie, 20)

(o] ay_¢2 bl

(?\1(1'—7?(2(18)) +A 2P(EGB)(I_P(£GB)) —I)UO 2}. (19)
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where

)
) = U (Z-P (&) s 1)
)=(7( (

S(Eas) =U (P(Eas)(l_P(Eas))uO)'

Hence, by the proposed MCNmethod, withn=1,thek™ realization of system response is:
Uy (AE,) = (AT +AP (&) (22)

Replacing Eg. (22) in Eq. (8), one obtains:

(X A% E g ) 2ATD D00, () ATY S, (£ U0 (¥)

i=1 j=1 i=1l j=1 (23)
= (CD(X))t u(l) (7\D1Euﬁ) = (CD(x))t ()\EZ' +)\2'P(EGB))UO,
whereuml(D\D,[)]is the numerical approximation of the solution, dzth®n the first ordér

convergence parameter.

The Neumanninethod proposed in [19, 20] was shown to lead tooat exact
solutions, with very small computational costs.[18], the one-dimensional version of the
method was applied to axial reaction-diffusion peofis. Considering a random membrane
stiffness, with coefficient of variation of up t®@%, the error in expected value was of 0.7%,
and the error in variance was of up to 4%. Thessre&mwere shown to be smaller than the
errors for a conventional, Monte Carlo - Neumantutgan with n=5, but much cheaper to
compute.

In ref. [20], the two-dimensional version of thesttmod, presented in this section, was
applied to stochasticEulerBernoullibeambendingmotd. The coefficient of variation of
beam bending stiffness was up to 30%. The erroexjected value and variance were shown
to be smaller than 0.1% and 1%, respectively;ategsors are much smaller than errors of a
conventional MC-Neumann solution witks5, yet faster to compute!

4 NEW DEVELOPMENTS AND RESULTS

Kist [24] investigated possible synergies betwelea tesults presented in Section 3. The
author developed one variant of the bounding methad two new methods combining the
Neumann bounds with the convergence parameter. These three methods, h@usriginal
two, were applied to problems of stochastic Kirdhiptate bending.

The first result employs the Cauchy-Schwartz irdityito the difference between the
Galerkin solution (Eqg. 4) and its Neumann serigg@amation (Eq. 8), as stated in Eq. (9).
Following a development similar to Section 3.1, dlu¢hor arrives at improved bounds for the
realizations of system responses.

The second result in [24] assumes that the firstero Neumann series can be
approximated by the one-dimensional approximatiomf ref. [19]:
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(I—P(Eug)):) =1+gﬂp(zw), where a” is a parameter to be determined. This solution

leads to different bounds for system responsepvatg section 3.1, and is called Mixed 1D
in the comparisons below.
The third result by [24] assumes that the firsdeor Neumann series can be

approximated by.z -P T oADL +Aop following [20], and uses this result to
E(XB (1) 1 2 EGB

construct bounds for system response, followingi@@@.1. This solution is called Mixed2D
in the sequence.

The three methods developed in [24], plus the dnginal methods in [17-20] were
applied in [24] to the solution of stochastic Kindff plate bending problems, withWinkler
and Pasternak-type foundations. These resultsuanenarized in Table 1, which gives further
insight into the methods. The results refer to obvariants with uncertain plate and/or

foundation stiffness, and with different coefficigrof variation 6:%). All error measures

reported herein are maximum errors obtained in piheblem domain, computed in

comparison to direct Monte Carlo simulation. Fdrbalunding solutions, results are reported
for the Euclidian norm. Computation times for bousdlutions were similar between

Euclidian and Frobenius norms, and approximatelg-third of the computation time for

direct MC simulation. Also, results obtained foetthree methods proposed in [24] were
similar when computed using Euclidian or Frobemasns.

Table 1: Comparison of results for five differentugions of plate bending problems.

. Error in Error in
Problem Solution method Mean (%) Variance (%)
MC-N-A 0.19 0.04
. _ Bounds +2.0 +16.0
Ra.mdom plate St_'ffneSﬁK =01, Improved bounds +2.0 +4.0
Winkler foundation Mixed 1D +05 +09
Mixed 2D +0.2 +0.5
MC-N-2A 0.9 10° 1.8 10°
Random foundation stiffness, | dBk())und; t gig 132 + 47188 182
- . . mproved bounds * +
Oy = 0.5, Winkler foundation Mixed 1D| +12.010° | +24.01F
Mixed 2D | +4.0 10° +8.010°
Random plate stiffnes®, =0.1, MC-N-4 0.05 0.1
Pasternak foundation Mixed 2D +0.25 +0.5
_ MC-N-A 0.04 0.2
Pasternak foundation, random Bounds +90 +18.0
plate and foundation stiffness, Improved bounds +20 +4.0
9, =9,, =9, =0.1, Mixed 1D +0.5 +1.0
Mixed 2D +0.25 +0.5

First, it is observed that the Monte Carlo — Nenma method vyields very accurate
results for all plate-bending problems addressei4f, also for a problem with very large

Winkler foundation stiffness& , =0.5). The original bounds proposed in [17,18] lead to
large deviations from reference results, with eym@rup to 9% in the mean, and up to +18%
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in variances. Also, for the large foundation s&ffs problem §,, =0.5), the errors obtained

via bounds are significantly larger than for thieestmethods. The improved bounds proposed
in [24] provide better results, in comparison te tbriginal, but the improvements are
insignificant w.r.t. to quality of other solutions.

The mixed formulations provided good results bggin, the accuracy of such results is
not as good as the accuracy of the original, twoedisional version of the Monte Carlo —
Neumanni method [19,20]. The 2D mixed formulation providetre accurate solutions
than its one-dimensional counterpart, as expected.

5 CONCLUSION

This paper reviewed two recent theoretical resultgarding application of the Neumann
series in solution of uncertainty propagation peotd in mechanics, and explored synergies
between these solutions. The first result, basedirexplored properties of the Neumann
series, allows establishing lower and upper bouimisthe realizations of the response
process.The second result derives from a mininumadf the error obtained by multiplying
the true stiffness matrix by a first-order Neumappproximation of its inverse. The deviation
of this internal product from the identity matrixelds a factor, which can be solved
analytically to yield very accurate and low-costusons. Three derived results were also
presented: improved bounds for system responsestvem mixed formulations, were one-
dimensional and two-dimensionalfactors are used to compute response bounds.iiée f
methods were employed in solution of stochastiteptending problem, with Winkler and
Pastenak types of foundation. Results show thatirtipgroved bounds are better than the
original, but still present large errors in meard atandard deviations of the response,for
some problems. The mixed formulations providedraggng and accurate bounding results,
in comparison to the original and improved bourtdewever, these bounding solutions are
not as accurate or efficient as the original 2D idanna method [19,20], which also yielded
very accurate results for all plate bending prolslesxddressed herein. These new results
confirm that the Neumanh4is a powerful method for the solution of uncertgipropagation
problems in mechanics. Synergies between this Hret methods of uncertainty propagation,
such as perturbation, stochastic FEM, etc., ar¢éoyeé explored.
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