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Abstract. A novel approach is suggested to compute the response of discretized stochastic 
elliptic partial differential equations by utilising the stochastic finite element analysis method.  
The mathematical form of the approach is established by projecting random scalars onto a 
random basis.  By implementing an eigendecomposition of a system’s stiffness matrix, the 
random scalars and random basis are computed.  Computational reduction is achieved by 
approximating the random eigensolutions and by only including dominant terms.  Two novel 
error minimisation techniques have been proposed in order to lower the error introduced by 
the approximations and the truncation:  i) A weak Galerkin approach, ii) A strong Galerkin 
approach.  The proposed methods are applied to analyse the bending of a stochastic 
cantilever beam.  The results obtained through the proposed approaches are compared with 
those obtained by using direct Monte Carlo Simulations and by using polynomial chaos. 

1 INTRODUCTION 

Uncertainties can substantially affect the analysis of physical structures. These 
uncertainties can occur in the properties of the material, in the geometry or boundary 
conditions of the structure or in the applied loads [1].  In order to represent the uncertainties 
that occur in physical systems, a stochastic finite element method [SFEM] can be applied.  In 
this work, a stochastic elliptic partial differential equation is considered −	∇�	����, 
�	∇����,
� = ����									�	��	�	 (1) 

with the associated Dirichlet condition ���,
� = 0									�	��	�	 (2) 

The spatial dimension under consideration is a bounded domain � ∈ ℝ� with piecewise 
Lipschitz boundary ��, where � is less than four.  �Ω, ℱ, �) is a probability space where 
 ∈ Ω is a sample point from the sampling space	Ω, ℱ is the complete �-algebra over the 
subsets of	Ω and � is the probability measure.  In Equation (1) � ∶ 	ℝ� × Ω → ℝ is a random 
field [2], which can be viewed as a set of random variables indexed by � ∈ ℝ�.  We assume 
the random field 	���,
� to be stationary and square integrable. ���,
� is also able to model 
different physical quantities.  Through combining SFEM with a Karhunen-Loève expansion, 
the discretized equivalent of Equation (1) can be been obtained.  The details of obtaining the 
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discretized equivalent of Equation (1) has been omitted, but can be located in numerous 
textbooks including [3].  For the case of a static cantilever beam experiencing a deterministic 
applied force, the discretized equivalent can take the following form 

 !" 	+ 		$%&�
�	!&
'
&() * 		��
� = 	!�
�	��
� 	= 		+	 (3) 

where !" ∈ ℝ,×, represents a deterministic, positive definite, symmetric matrix.  !- ∈ℝ,×, are random symmetric matrices for i = 1, 2, … ,M, ��
� ∈ ℝ, the response vector, ξ&�
� a set of random variables and + ∈ ℝ, the deterministic input force vector.  For the 
remainder of this paper we will assume ξ&�
� to be Gaussian random variables.  We aim to 
produce a new solution approach to solve the discretised equivalent of Equation (1).   

2 MOVIVATION 

The exact solution to the set of stochastic linear equations given above can be obtained 
through a direct Monte Carlo Simulations [DMCS] approach by solving the following 
expression for each sample. ��
� = 	!�
�45	+	 (4) 

However, DMCS can be seen as a computationally expensive method, especially if there is 
a large number of stochastic linear equations to be solved. In order to avoid the use of DMCS, 
alternative methods have been explored. The response of Equation (3) can be represented 
through summing products of random scalars and deterministic vectors 

��
� = $�6�
�	76
'8
6() 	 (5) 

Equation (5) can be considered as the polynomial chaos method [PC] where �6�
� would 
correspond to the polynomial chaoses, and 	76 would correspond to unknown deterministic 
vectors.  The full details of this method can be found in [3].   Due to the vector in Equations 
(5) being deterministic, we aim to acquire a solution where both the scalars and vectors are 
random. 

��
� = $�6�
�	76�
�	'9
6() 	 (6) 

We aim to see if Equation (6) can incorporate the full stochastic nature of Equation (3).  
Therefore the aim of this paper is to obtain an expression for the response of Equation (3) that 
is of the same form as Equation (6). 

3 INTRODUCING THE METHOD 

In order to implement our aim, the random eigenvalue problem is initially considered !�
�	:;�
� = 		 <;�
�	:;�
�; 										> = 1, 2, … �	 (7) 

For convenience, the matrices of the random eigenvalues and eigenvectors of !�
� are 
defined as follows 
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?�
� = diag	�<)�
�, <��
�,… , <,�
� 	∈ 		ℝ,×,	 (8) 

C�
� = �:)�
�,:��
�,… ,:,�
� 	∈ 	ℝ,×,	 (9) 

The random eigenvalues are arranged in ascending order so <)�
� < <��
� < ⋯ <<,�
�.  The corresponding eigenvectors are arranged in the same order.  Due to the 
orthogonality of C�
�, we can deduce that C�
�45 =	C�
�F.  Thus the following identities 
can be defined (
 has been omitted for notational convenience) CG!	C = ?; 					! = 	C4F?	C45					and						!4) = C	?45	CG	 (10) 

Using these identities, the response of Equation (3) can be expressed as 

��
� = 	C	?45	CG	+ = 	$:6G�
�	+<6�
�,
6() 	:6�
�	 (11) 

Equation (11) is of the same form as Equation (6) where 
:IJ�K�	+LI�K�  corresponds to the scalar 

term �6�
�, :6�
� corresponds to the vector term 76�
� and � corresponds to M�.  In this 
particular method, :6�
� forms a complete orthogonal basis.  Therefore, it can be concluded 
that the response of Equation (3) can be expressed in the same form as Equation (6) where we 
have random scalars projected onto a stochastic basis.  For the remainder of this paper, this 
method has been labelled [SP]. 

4 COMPUTATIONAL REDUCTION 

4.1 Approximating the random eigenvalues and eigenvectors 

Approximating the random eigenvalues and eigenvectors may improve the calculation cost 
and there are numerous methods of doing so.  Due to its low computational cost, a first order 
perturbation approach for obtaining the random eigenvalues and eigenvectors has been 
explored.  Solutions of different perturbation methods are obtained by truncating the Taylor 
series expansion.  Due to its efficiency and ease, the first order perturbation method has been 
used.  The Nth random eigenvalue and its corresponding random eigenvector is given by <6 ≈	<6P +	∑ RSLISTUV	%;�
�';() 								and								:6 ≈	:6P +	∑ RS:ISTUV	%;�
�';() 	 (12) 

where %;�
� is a set of Gaussian random variables with mean zero and unit variance.  By 
differentiating the eigenvalue equation with respect to %;, pre-multiplying with :6G and 

utilising that :6G	:6 = 1, the derivatives of the eigenvalues and eigenvectors can be expressed 
as 

�<6�%; =	:6PG 	 �!�%; :6P 										and											 �:6�%; =	 $ :&PW 	 �!�%; :6P<6P −	<&P 	:;
X

&()	Y6 	 (13) 

where 
S!STU = !;.  The derivative of the eigenvectors requires all the deterministic 

eigenvalues and eigenvectors to be known.  However care is needed with this approach as all 
the eigenvalues need to be unique and the coefficient of variation needs to be of a moderate 
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value.  For the case of repeated eigenvalues, the general method of approximating the 
response of Equation (3) continues to be valid.  However a different approach would be 
needed whilst approximating the eigensolutions to that given in this section. 

4.2 Truncation 

The series given in Equation (11) can be truncated after a certain amount of terms.  The 
high terms of the summation have a relatively low value due to the eigenvalues being ordered 
ascendingly; this allows the low valued terms to be discarded whilst retaining the dominant 
terms in the series.  Consequently Equation (11) can be truncated as follows 

��
� ≈ $:6G�
�	+<6�
�Z
6() 	:6�
�	 (14) 

where <6�
� and :6�
� represent the random eigenvalues and the random eigenvectors and t 
corresponds to the number of terms retained in the summation.  A low-cost MCS is performed 
in order to obtain the full response of ��
�. 
5 ERROR MINIMISATION 

The approximations and truncation introduced in Section 4 introduces error into the 
calculation.  This has motivated an error minimisation appraoch, and as a consequence, two 
Galerkin approaches are considered: (a) a weak Galerkin approach [SPWG]  (b) a strong 
Galerkin approach [SPSG].  The SPWG approach is initially considered. 

5.1 A weak Galerkin approach [SPWG] 

For this approach, the solution vector is modified to take the following form 

�[�
� ≈ $\6 	]:6G�
�	+<6�
� ^Z
6() 	:6�
�	 (15) 

where <6�
� ∈ ℝ and :6�
� ∈ ℝX×X represent the approximated random eigenvalues and 
eigenvectors, + ∈ ℝX×X the deterministic applied force and \6 ∈ ℝZ are deterministic 
constants which need to be determined.  The residual vector for this the new approach is 
defined as _)�
� = !�
��[�
� − +	 (16) 

By making the residual orthogonal to a basis function, the deterministic scalars \6	can be 
computed.  As Equation (15) can be viewed as a projection onto a subset of the random 
eigenvectors, the residual can be made orthogonal to the same subset of random eigenvectors. _)�
� ⊥ 	:;�
�										∀			> = 1, 2, … , b	 (17) 

Here 〈d	�
�,e	�
�〉 = 	g d�
�e�
�h��
�K  defines the inner product norm. By using 
this condition and the expression for the residual, one has 

i	j:;W	�
� kl	�ω�n$\6 	]:6G�
�	+<6�
� ^Z
6() 	:6�
�o − +pq = 0	 (18) 
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where ir∎t donates the expected value.  For notational convenience, we can define u6�
� =v:IJ�K�	+LI�K� w, thus it can be shown that Equation (18) can take the following form 

ix$:;W�
�	l�
�	:6�
�	u6	�
�	\6Z
6() y 	= ir:;�
�t+	 (19) 

By defining the vector z = �\), \�, … , \ZG, Equation (19) can be simplified to  ir{�
�t	z = ir|�
�t									N, > = 1, 2, … , b	 (20) 

where {;6 =	:;W�
�	l�
�	:6�
�	u6�
�;					∀	N, > = 1,2, … , b, and |�
� = :;�
�	+;	∀		> = 1,2, … , b.  Therefore by solving the set of linear equations given by Equation (20), an 
explicit closed form for the unknown coefficients can be obtained.  The arising expected 
values can be computed by using low-order fast Monte Carlo Simulations. 

5.2 A strong Galerkin approach [SPSG] 

In a similar manner to the previous approach, the solution vector can be modified to take 
the following form 

�́�
� ≈ $�6�
�	]:6G�
�	+<6�
� ^Z
6() 	:6�
�	 (21) 

where <6�
� ∈ ℝ and :6�
� ∈ ℝX×X represent the approximated random eigenvalues and 
eigenvectors, ~ ∈ ℝX×X the deterministic applied force.  Contrary to the previous approach, �6�
� ∈ ℝ are unknown constants that need to computed for each realisation.  The residual 
vector for this approach is defined as _��
� = !�
��́�
� − +	 (22) 

By making the residual orthogonal to a basis function, �6�
� can be computed.  By using 
the same analogy as seen in the previous approach, the residual can be made orthogonal to the 
subset of random eigenvectors.  This results in the following expression 

:;W	�
� kl	�ω�n$�6�
�	]:6G�
�	+<6�
� ^Z
6() 	:6�
�o − +p = 0	 (23) 

For notational convenience, we can define u6�
� = v:IJ�K�	+LI�K� w. Therefore, the above 

expression can be manipulated to give 

	�$:;W�
�	l�
�	:6�
�	u6	�
�	�6�
�Z
6() � = :;�
�	+	 (24) 

where �6�
�	would be computed for each realisation.  By defining the vector ��
� =��)�
�, ���
�,… , �Z�
�G, Equation (15) can be simplified to  {�
�	��
� = |�
�									N, > = 1, 2, … , b	 (25) 
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where {;6 =	:;W�
�	l�
�	:6�
�	u6�
�;					∀	N, > = 1,2, … , b, and |�
� = 	:;�
�	+;	∀		> = 1,2, … , b.  The number of equations that need to be solved in order to calculate the 
unknown vector ��
� corresponds to the value of b.  Therefore, similarly to the weak 
Galerkin approach, the lower the dimension of the reduced system, the fewer the number of 
equations that need to be solved. 

6 APPLICATION 

Thus far we have discussed five different methods for computing or approximating the 
response of Equation (3):  i) DMCS, ii) SP, iii) SPWG, iv) SPSG and v) PC.  These five 
methods are now applied to compute the bending of a static Euler-Bernoulli cantilever beam 
of length 1.00 m.  The cross-section of the beam is a rectangle of length 0.04 m and height 
0.005 m and a 1.00 N deterministic vertical point load is applied at the free end of the beam. 

The system has been discretized into a 100 elements by using SFEM. Consequently, the 
dimension of the corresponding determinant matrix is 200 × 200.  For the deterministic case, 
the Young's modulus is E = 200 × 109 Nm-2 thus corresponding to a steel beam.  The 
deterministic second moment of area (moment of inertia) of the beam is 4.1667 × 10-11 m4.  
The bending rigidity, ��, can be assumed to be a stationary Gaussian random field ��	��, 
� = 	�����	�1 + ���, 
��	 (26) 

where ����� = 83.33 Nm2. The function ���, 
� represents a stationary Gaussian field with zero 
mean, with � being the coordinate direction of the length of the beam.  The standard deviation 
is given by 0.18 × �����, and the covariance function by ����), ��� = 	�����	|�84�9|	�/	��			 (27) 

where �� is the correlation length (0.50 m) and ��the standard deviation; The KL expansion 
of the system has been truncated to include two terms.  The five listed methods have been 
simulated 10,000 times.  For the SP, SPWG and SPSG methods, 4 terms have been retained in 
their respective equations, and a 4th order polynomial chaos approach is used for the PC 
method.  

Figures 1a and 1b illustrate the mean and standard deviation of the normalised vertical 
displacement at all nodes of the beam.  It is apparent that all the approximation methods 
captures the mean of the DMCS method pretty well.  The SPSG method best captures the 
standard deviation of the DMCS method, whilst both the SP and SPWG methods considerably 
out performs the PC approach.  The percentage error of the vertical displacement arising when 
using the SP, SPWG, SPSG and the PC methods in place of the DMCS method is illustrated 
in Figures 1c and 1d.  The percentage error is given by 

�% = 100 × |�M�� − �M|�M�� 	 (28) 

where DMCS indicates the solution of the direct approach, and CM the solution of the 
comparable methods.  Barring the initial 0.20m of the bar, the percentage error of the mean 
and standard deviation of the SP, SPWG and SPSG methods are considerably lower than that 
of the PC method.  When comparing the SPWG and SPSG methods it is apparent that the 
percentage error of the mean is always slightly lower when the SPSG method is used.  
However when comparing the percentage error of the standard deviation, barring the initial 
0.30m of the bar, the SPSG method considerably outperforms the SPWG method. 
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(a) Mean of the vertical displacement (b) Standard deviation of the vertical displacement 

  
(c) Percentage error of the mean (d) Percentage error of the standard deviation 

  
The �� relative error for the mean and standard deviation of the response of the cantilever 

beam is considered.  The �� relative error of the mean is defined as 

��9 =	‖��'�� −	��'	‖�‖��'��‖� 	 (29) 

where ��'�� denotes the mean of the response vector obtained by using the DMCS method 
and ��' the mean of the response vector of the comparable methods.  The expression for the �� relative error of the standard deviation takes a similar form to that of Equation (29). Table 
1 displays the �� relative error for the mean and the standard deviation for different truncation 
values of Equations (11), (15) and (21) and for the PC approach. 

It is apparent that both the SPWG and SPSG methods produces lower relative errors than 
the SP method for the mean.  When considering the �� relative error for the standard 
deviation, the SPWG method does not significantly lower the error.  However a substantial 
drop in the relative error is seen when the SPSG method is used.  As the relative errors for 
both the mean and standard deviation decreases as the number of terms in the summations 
increase, it is apparent that the truncation value can be chosen in line with an acceptable level 
of error.  The CPU times for the five methods is given in Table 2.  

 

Table 1:  �� error arising in the mean and standard deviation of the response for each of the methods 
 Relative error in the mean Relative error in the standard deviation 

Number of terms SP SPWG SPSG PC SP SPWG SPSG PC 
2 0.0063 0.0058 0.0058 - 0.0092 0.0092 0.0029 - 
4 0.0036 9.59 × 10-4 9.07 × 10-4 - 0.0101 0.0101 0.0010 - 
5 0.0025 6.37 × 10-4 5.54 × 10-4 - 0.0102 0.0101 5.14 × 10-4 - 
10 0.0025 3.28 × 10-5 9.54 × 10-5 - 0.0102 0.0102 9.88 × 10-5 - 
- -  - 0.0017 -  - 0.0635 
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Table 2:  Computational time 

Method DMCS SP SPWG SPSG PC 
CPU (sec) 10.21 0.76 3.25 3.24 0.84 
 
Regarding CPU, the SP method outperforms all the other methods.  Although that using 

the SPWG and SPSG methods is faster than the DMCS method, the PC method is faster.  
However when the order of the PC method or the number of degrees of freedom is 
sufficiently increased, the CPU of the PC method will substantially increase and in turn, will 
be higher than the SPWG and SPSG methods.  Generally it can be concluded that the SPSG 
method outperforms the SPWG method as it produces less error in a similar CPU time.  
However the SPWG method does not need as much storage capacity as the SPSG method. 

7 CONCLUSION 

An approach has been suggested to calculate the response of discretized stochastic elliptic 
partial differential equations.  Through utilising the stochastic finite element method and the 
random eigenvalue problem, it has been proven that the solution can be represented through 
projecting random scalar onto a random basis.  Due to the high computational cost associated 
with calculating the exact solution, a reduced approach is proposed where random eigenvalues 
and eigenvectors are approximated and low valued terms are discarded.  Two novel 
multiplicative Galerkin error minimisation approaches have been presented.  i) a weak 
Galerkin approach, ii) a strong Galerkin approach.  The proposed methods have been used to 
analyse the bending of a static cantilever beam.  The solutions obtained through the proposed 
methods have been compared with those obtained through direct MCS and through using a 
polynomial chaos method.  Although both error minimisation approaches lowers the error of 
the mean, it is only the strong Galerkin error minimisation approach that substantially lowers 
the error arising in the standard deviation.  Further work would focus on efficient ways of 
computing random eigenfunctions and performing model-order reduction. 
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