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Abstract. A novel approach is suggested to compute the nsgpof discretized stochastic
elliptic partial differential equations by utilisgnthe stochastic finite element analysis method.
The mathematical form of the approach is estabtishy projecting random scalars onto a
random basis. By implementing an eigendecompasifoa system’s stiffness matrix, the
random scalars and random basis are computed. Q¢atipnal reduction is achieved by
approximating the random eigensolutions and by amtjuding dominant terms. Two novel
error minimisation technigues have been proposeorder to lower the error introduced by
the approximations and the truncation: i) A weakl€kin approach, ii) A strong Galerkin
approach. The proposed methods are applied toyaeathe bending of a stochastic
cantilever beam. The results obtained throughptwposed approaches are compared with
those obtained by using direct Monte Carlo Simalaiand by using polynomial chaos.

1 INTRODUCTION

Uncertainties can substantially affect the analysis physical structures. These
uncertainties can occur in the properties of theens, in the geometry or boundary
conditions of the structure or in the applied lofds In order to represent the uncertainties
that occur in physical systems, a stochastic fieieenent method [SFEM] can be applied. In
this work, a stochastic elliptic partial differesdtequation is considered

— V2 [a(x, w) Viu(x, w)] = p(x) xin® 1)
with the associated Dirichlet condition
u(x,w) =0 xin® (2)

The spatial dimension under consideration is a dedrdomair® € R¢ with piecewise
Lipschitz boundaryd®, whered is less than four.(Q,F, B) is a probability space where
w € Q is a sample point from the sampling spAc¢eF is the completer-algebra over the
subsets ofl andB is the probability measure. In Equation 1) R x O — R is a random
field [2], which can be viewed as a set of randamiables indexed by € RY. We assume
the random fielda(x, w) to be stationary and square integrahle, ) is also able to model
different physical quantities. Through combiningEB1 with a Karhunen-Loeve expansion,
the discretized equivalent of Equation (1) can éernbobtained. The details of obtaining the
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discretized equivalent of Equation (1) has beentteohi but can be located in numerous
textbooks including [3]. For the case of a stafiatilever beam experiencing a deterministic
applied force, the discretized equivalent can takefollowing form

u(w)= A ulw) = f )

M
A, + Z §i(w) A
=1

where 4, € R™" represents a deterministic, positive definite, syatric matrix. A; €
R™™ are random symmetric matrices foe 1,2, ...,M, u(w) € R" the response vector,
¢ (w) a set of random variables aifd= R™ the deterministic input force vector. For the
remainder of this paper we will assuféw) to be Gaussian random variables. We aim to
produce a new solution approach to solve the diseskequivalent of Equation (1).

2 MOVIVATION

The exact solution to the set of stochastic lineguations given above can be obtained
through a direct Monte Carlo Simulations [DMCS] aggrh by solving the following
expression for each sample.

u(w) = A(w) 1 f (4)

However, DMCS can be seen as a computationallyresipe method, especially if there is
a large number of stochastic linear equations tedbeed. In order to avoid the use of DMCS,
alternative methods have been explored. The respoh&quation (3) can be represented
through summing products of random scalars andmdetestic vectors

M,
) = ) g g, ®)

j=1

Equation (5) can be considered as the polynomiabgmethod [PC] wherg () would
correspond to the polynomial chaoses, andwould correspond to unknown deterministic
vectors. The full details of this method can benid in [3]. Due to the vector in Equations
(5) being deterministic, we aim to acquire a solutwhere both the scalars and vectors are
random.

M;

() = ) g(@) g;(v) ®)

j=1

We aim to see if Equation (6) can incorporate thle dtochastic nature of Equation (3).
Therefore the aim of this paper is to obtain arresgion for the response of Equation (3) that
is of the same form as Equation (6).

3 INTRODUCING THE METHOD
In order to implement our aim, the random eigengg@toblem is initially considered
A(w) ¢ (w) = L(w) P (w); k=12 .n ™)

For convenience, the matrices of the random eideasaand eigenvectors df(w) are
defined as follows
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A(w) = diag [1;(@), 1 (@), .., 1,(@)] € R™" (®)

P (w) = [¢1(w), P2(®), ..., Ppr(w)] € R ©)

The random eigenvalues are arranged in ascendidgr @0 1, (w) < A,(w) < -+ <
A,(w). The corresponding eigenvectors are arrangedhénsame order. Due to the
orthogonality ofd®(w), we can deduce thdi(w)~! = ®(w)T. Thus the following identities
can be defined«f has been omitted for notational convenlence)

PTAP=A A= @ TA®P!l and A=A 1T (10)
Using these identities, the response of EquatipodB be expressed as
noT
i(w
u(w)= ®A1OTf = ¢ f ¢ (w) (11)
i Aj(w)
j=1
¢ () f

Equation (11) is of the same form as Equation (b6¢ne corresponds to the scalar

2j(w)
terma;(w), ¢;(w) corresponds to the vector tegn(w) andn corresponds td/,. In this
particular methode ;(w) forms a complete orthogonal basis. Thereforeait be concluded
that the response of Equation (3) can be expreasbe same form as Equation (6) where we

have random scalars projected onto a stochastis.b&®r the remainder of this paper, this
method has been labelled [SP].

4 COMPUTATIONAL REDUCTION

4.1 Approximating therandom eigenvalues and eigenvectors

Approximating the random eigenvalues and eigenvect@ay improve the calculation cost
and there are numerous methods of doing so. Diie ksw computational cost, a first order
perturbation approach for obtaining the random reigkies and eigenvectors has been
explored. Solutions of different perturbation nueth are obtained by truncating the Taylor
series expansion. Due to its efficiency and edwefirst order perturbation method has been
used. Thgth random eigenvalue and its corresponding randgemeector is given by

A~ Xy + Tk 1( )f"( w) and  ¢;~ ¢ + NiL 1(a¢]) $k(w) (12)

whereé, (w) is a set of Gaussian random variables with mean aed unit variance. By
differentiating the eigenvalue equation with redgptc ¢,, pre-multiplying with ¢]T- and

utilising that¢]T- ¢; = 1, the derivatives of the eigenvalues and eigetors can be expressed
as

0A

N T

aA; 0A 0 i, 532 P
7 = ¢}‘0 —¢]0 and & — M ¢k (13)
Sk Sk Sk ._Z. Aj = Aig

1=1%#j

wheref—Ak The derivative of the eigenvectors requires tak deterministic

k

eigenvalues and eigenvectors to be known. Howeaer is needed with this approach as all
the eigenvalues need to be unique and the coeffiokevariation needs to be of a moderate
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value. For the case of repeated eigenvalues, émergl method of approximating the
response of Equation (3) continues to be valid. wéler a different approach would be
needed whilst approximating the eigensolutiond& given in this section.

4.2 Truncation

The series given in Equation (11) can be truncafest a certain amount of terms. The
high terms of the summation have a relatively l@lue due to the eigenvalues being ordered
ascendingly; this allows the low valued terms todisearded whilst retaining the dominant
terms in the series. Consequently Equation (14 )beatruncated as follows

t
¢ (o) f
L1 1)
wherel;(w) and¢;(w) represent the random eigenvalues and the randgenwactors and

corresponds to the number of terms retained irstinemation. A low-cost MCS is performed
in order to obtain the full responsewfw).

u(w) =

¢;(w) (14)

5 ERROR MINIMISATION

The approximations and truncation introduced inti®ec4 introduces error into the
calculation. This has motivated an error minim@atppraoch, and as a consequence, two
Galerkin approaches are considered: (a) a weakrkaalapproach [SPWG] (ba strong
Galerkin approach [SPSG]. The SPWG approachtisligiconsidered.

5.1 A weak Galerkin approach [SPWG]

For this approach, the solution vector is moditedake the following form
t

T
uU(w) = Z ¢ <¢J () f) d’j () (15)

= Aj(w)

where 4;(w) € R and ¢;(w) € R¥*V represent the approximated random eigenvalues and
eigenvectors,f € R¥*V the deterministic applied force ang € R® are deterministic

constants which need to be determined. The rédsideaor for this the new approach is
defined as

ri(w) = A(w)i(w) - f (16)

By making the residual orthogonal to a basis funmctthe deterministic scalacgcan be
computed. As Equation (15) can be viewed as aeption onto a subset of the random
eigenvectors, the residual can be made orthogorthetsame subset of random eigenvectors.

ri(w) L ¢p(w) V k=1,2,..,t (17)

Here (v (w),w (w)) = fw v(w)w(w)P(dw) defines the inner product norm. By using
this condition and the expression for the residoaé& has

d T
E { ¢k (@) |A (w) ch <%> ¢j(@) |-f|;=0 (18)
j=1 J
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whereE{m} donates the expected value. For notational caemea, we can defing;(w) =
(qb,T(w)f
Aj(w)

), thus it can be shown that Equation (18) can ta&dollowing form

E {Z (@) A) (@) B (@) cj} = Bl (0)}f 19)
j=1

By defining the vectot = [cy, ¢y, ..., ¢;]T, Equation (19) can be simplified to
E{Z(w)} c = E{y(w)} k=12,..,t (20)
where Z,; = ¢ (w) A(w) ¢;(w) pij(w); Vjk=12.,t, and y(w)=¢i(w)f;
Vv k=1,2,..,t. Therefore by solving the set of linear equatigiven by Equation (20), an
explicit closed form for the unknown coefficientancbe obtained. The arising expected
values can be computed by using low-order fast Bl@drlo Simulations.
5.2 A strong Galerkin approach [SPSG]

In a similar manner to the previous approach, thation vector can be modified to take
the following form

T
(w) ~Zd< ) ("”( ”) ¢;(®) @

where 4;(w) € R and ¢;(w) € ]RNXN represent the approximated random eigenvalues and

eigenvectorsf € RV*N the deterministic applied force. Contrary to firevious approach,
dj(w) € R are unknown constants that need to computed fdr ezalisation. The residual
vector for this approach is defined as

ry(w) = A(w)i(w) - f (22)

By making the residual orthogonal to a basis fumctd;(w) can be computed. By using

the same analogy as seen in the previous appritbechgsidual can be made orthogonal to the
subset of random eigenvectors. This results irfidh@wing expression

¢ () f

oL (@) [A (@) Zd( )(M )

)qb,-(w) —f|=0 (23)

¢ (@) f

For notational convenience, we can defiﬁ@(w)z(l_(w)
J

). Therefore, the above
expression can be manipulated to give

t
(2 L) AW) ¢;() f; (@) 4 (w)) = du@) f (24
j:

where d;(w) would be computed for each realisation. By definihe vectord(w) =
[dy(w),dy(w), ..., d:(w)]T, Equation (15) can be simplified to

Z(@) dw) =y(w) k=12 ..t (25)
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where Z;; = ¢ (w) Alw) ¢;(w)pi(w); Vjk=12.,t, and y(w)= ¢y(w)f;

vV k=1,2,..,t. The number of equations that need to be solmearder to calculate the
unknown vectord(w) corresponds to the value of Therefore, similarly to the weak
Galerkin approach, the lower the dimension of #xduced system, the fewer the number of
equations that need to be solved.

6 APPLICATION

Thus far we have discussed five different methadscbmputing or approximating the
response of Equation (3): i) DMCS, ii) SP, iii)\ 8B, iv) SPSG and v) PC. These five
methods are now applied to compute the bendingstétec Euler-Bernoulli cantilever beam
of length 1.00 m. The cross-section of the beam risctangle of length 0.04 m and height
0.005 m and a 1.00 N deterministic vertical poatd is applied at the free end of the beam.

The system has been discretized into a 100 elentgntssing SFEM. Consequently, the
dimension of the corresponding determinant magifQ00x 200. For the deterministic case,
the Young's modulus i€ = 200 x 10° Nm? thus corresponding to a steel beam. The
deterministic second moment of area (moment oftimeof the beam is 4.166x% 10 m".
The bending rigidityEl, can be assumed to be a stationary Gaussian raineldm

El (x,w) = EI (1 + a(x, w)) (26)

whereE!l = 83.33 Nm?. The functiona(x, w) represents a stationary Gaussian field with zero
mean, withx being the coordinate direction of the length & leam. The standard deviation
is given by0.18 x EI, and the covariance function by

Ca(xlle) = O'ge( |X1—X2| )/ Ha (27)

wherey, is the correlation length (0.50 m) angthe standard deviation; The KL expansion
of the system has been truncated to include twoderThe five listed methods have been
simulated 10,000 times. For the SP, SPWG and SR&Bods, 4 terms have been retained in
their respective equations, and & arder polynomial chaos approach is used for the PC
method.

Figures la and 1b illustrate the mean and standewéition of the normalised vertical
displacement at all nodes of the beam. It is aggathat all the approximation methods
captures the mean of the DMCS method pretty wé&lhe SPSG method best captures the
standard deviation of the DMCS method, whilst kb#inSP and SPWG methods considerably
out performs the PC approach. The percentage @frthe vertical displacement arising when
using the SP, SPWG, SPSG and the PC methods ie pfabe DMCS method is illustrated
in Figures 1c and 1d. The percentage error isngye

IDMCS — CM|
DMCS

where DMCS indicates the solution of the direct approach, &M the solution of the
comparable methods. Barring the initial 0.20mhe bar, the percentage error of the mean
and standard deviation of the SP, SPWG and SPSGodgetre considerably lower than that
of the PC method. When comparing the SPWG and SR8Bods it is apparent that the
percentage error of the mean is always slightlyelowhen the SPSG method is used.
However when comparing the percentage error ofstardard deviation, barring the initial
0.30m of the bar, the SPSG method considerablyeoiaipms the SPWG method.

(28)

€0, = 100 X
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The L? relative error for the mean and standard deviatibtie response of the cantilever
beam is considered. TIé relative error of the mean is defined as

lepmcs — tem 2
ELZ =

(29)
leepmesllz

whereupycs denotes the mean of the response vector obtaypedibg the DMCS method
andu., the mean of the response vector of the comparabteods. The expression for the
L? relative error of the standard deviation takesvilar form to that of Equation (29). Table
1 displays thd.? relative error for the mean and the standard dewidor different truncation
values of Equations (11), (15) and (21) and forRKkeapproach.

It is apparent that both the SPWG and SPSG methatkices lower relative errors than
the SP method for the mean. When considering Ltheelative error for the standard
deviation, the SPWG method does not significardglydr the error. However a substantial
drop in the relative error is seen when the SPS@adeis used. As the relative errors for
both the mean and standard deviation decreasdgasutmber of terms in the summations
increase, it is apparent that the truncation valrebe chosen in line with an acceptable level
of error. The CPU times for the five methods egiin Table 2.

Table 1: 12 error arising in the mean and standard deviatiohe response for each of the methods

Relative error in the mean Relative error in the standard deviation
Number of terms | SP SPWG SPSG : PC SP_ SPWG SPSG : PC
2 0.0063  0.0058 0.0058 - 0.0092 0.0092 0.0029
4 0.0036 9.59x 10* 9.07x 10* ! - 0.0101 0.0101 0.0010 ! -
5 0.0025 6.37x 10 554x10*! - | 0.0102 0.0101 5.14 x 10-4 -
R 10 ]! 0.0025_3.28x10° 9.54x10°: - || 0.0102 _ 0.0102 9.88 x10-5 - |
- - - | 0.0017 - -1 0.063f

Meccanica dei Materiali e delle Strutture | VI (2016), 1, PP. 74-81 80



S. E. Pryse and S. Adhikari

Table 2: Computational time
Method DMCS SP SPWG SPSG PC
CPU (sec) 10.21 0.76 3.25 3.24 0.84

Regarding CPU, the SP method outperforms all theratnethods. Although that using
the SPWG and SPSG methods is faster than the DM&8oeh the PC method is faster.
However when the order of the PC method or the rundd degrees of freedom is
sufficiently increased, the CPU of the PC metholll suibstantially increase and in turn, will
be higher than the SPWG and SPSG methods. Gengredin be concluded that the SPSG
method outperforms the SPWG method as it produess érror in a similar CPU time.
However the SPWG method does not need as muclystoapacity as the SPSG method.

7 CONCLUSION

An approach has been suggested to calculate thenss of discretized stochastic elliptic
partial differential equations. Through utilisitige stochastic finite element method and the
random eigenvalue problem, it has been proventh®asolution can be represented through
projecting random scalar onto a random basis. tbuke high computational cost associated
with calculating the exact solution, a reduced apph is proposed where random eigenvalues
and eigenvectors are approximated and low valuechsteare discarded. Two novel
multiplicative Galerkin error minimisation appro@sh have been presented. i) a weak
Galerkin approach, ii) a strong Galerkin approadhe proposed methods have been used to
analyse the bending of a static cantilever beaime Solutions obtained through the proposed
methods have been compared with those obtainedghrdirect MCS and through using a
polynomial chaos method. Although both error misation approaches lowers the error of
the mean, it is only the strong Galerkin error miisiation approach that substantially lowers
the error arising in the standard deviation. Fertwork would focus on efficient ways of
computing random eigenfunctions and performing riodger reduction.
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