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Abstract. A novel approach is suggested to compute the nsgpof discretized stochastic
elliptic partial differential equations by utilisgnthe stochastic finite element analysis method.
The mathematical form of the approach is estabtishg projecting random scalars onto a
random basis. The method is based upon an eigengmsition of a system’s stiffness
matrix. Computational reduction is achieved by rpgmating the random eigensolutions,
and by only including dominant terms. Two novebeminimisation techniques have been
proposed in order to lower the error introducedtbythe approximations and the truncation:
1) A weak Galerkin approach, ii) A strong Galerkapproach. These have been applied
through introducing unknown multiplicative scalaréo the expression of the response. It
can be shown that the unknown scalars for both @g@gres can be expressed in a closed-
form expression. The proposed methods are appbednalyse the bending of a static
stochastic cantilever beam. The results obtainfedugh the proposed approaches are
compared with those obtained by using direct Mo@&rlo Simulations and by using
polynomial chaos.

1 INTRODUCTION

1.1 Background

Uncertainties can substantially affect the analysis physical structures. These
uncertainties can occur in the properties of thdensd, in the geometry or boundary
conditions of the structure or in the applied lofds In order to represent the uncertainties
that occur in physical systems, a stochastic fieieenent method [SFEM] can be applied. In
this work, a stochastic elliptic partial differesdtequation is considered

—V[alx,w) Vu(x,w)] = p(x) xin® (1)
with the associated Dirichlet condition
u(x,w) =0 xin® (2

The spatial dimension under consideration is a dedrdomain® € R* with piecewise
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Lipschitz boundaryd®, whered is less than four.(Q, F, B) is a probability space where
w € Q is a sample point from the sampling spAc¢ceéF is the completer-algebra over the
subsets ofl andB is the probability measure. In Equation 1) R x O — R is a random
field [2], which can be viewed as a set of randariables indexed by € R%. We assume
the random fielda(x, w) to be stationary and square integrahlex, w) is also able to model
different physical quantities. Following the distization of Equation (1) through the SFEM
[3], this work aims to produce a new solution apfo in order to solve the discretised
equivalent of Equation (1).

1.2 Discretisation of the stochastic partial differential equation

The random processx, w) seen in Equation (1) can be expanded by a gesedafourier
expansion known as the Karhunen-Loéeve expansion

a(x, w) = ap(x) + Zﬁ &i(w) i(x) 3
i=1

Herea, is the mean function, ant] and ¢; the eigenvalues and eigenvectors satisfying
the integral equation

f Ca(xy,x5) @ (x1) dxy = 4; ;(x2) Vi=12.. (4)
D

We will consideré;(w) to be uncorrelated standard Gaussian random VesiaBfter
truncating the series seen in Equation (3) to Mtb term, the resulting equation can be
substituted into the original stochastic elliptigadrtial differential equation. By applying
appropriate boundary conditions, the discretizathégn takes the form

uw)= f (5)

M
A, + Z ¢i(w) Ay
=1

where 4, € R™" represents a deterministic, positive definite, sytric  matrix.
A; € R™™ are random symmetric matrices fot 1,2, ..., M, u(w) € R" the response vector
and f € R*the deterministic input force vector. The detafsobtaining the discretized
equivalent of Equation (1) has been omitted, but ba located in numerous textbooks
including [3].

2 MOVIVATION
For simplicity, we can express Equation (5) as
Alw)u(w) = f (6)

where the random matrid(w) = 4, + XM, & (w) A;. The exact solution to the set of
stochastic linear equations given above can beimdatathrough a direct Monte Carlo
Simulations [MCS] approach by solving the followiegpression for each sample.

u(w) = A(w) 1 f (7

Convergence is guaranteed if the number of re@izais sufficiently large. However, direct
MCS can be seen as a computationally expensiveaaidt], especially if there is a large
number of stochastic linear equations to be sollre@rder to avoid the use of direct MCS,
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alternative methods have been explored. The respoh&quation (6) can be represented
through summing products of random scalars andmdetestic vectors
M,
) = ) g g, ®)

j=1
Equation (8) can be considered as the polynomab€imethod

P
u(w) = Z He(£(w)) ug ©)
k=1

wherer(f (a))) represents the polynomial chaoses (corresponairtget random scalars),
and u,, represents unknown deterministic vectors that nede determined. The value pf

is determined by a basic random variaMeand by the order of the Polynomial Chaos
expansiorp. In this instancel corresponds to the order of the Karhunen-Loeveaesipn

o (M +j — 1)
P= )Y ———— (10)
L jt(M = 1)!

It is evident thatP increases rapidly when either the order of thehkaen-Loeve
expansion or the order of the Polynomial Chaos esipa is increased. The unknown vector
u;, can be obtained by using a Galerkin error miningisapproach [3]. This approach leads
to a system of linear equations of size¢ x nP. A possible drawback to this approach is the
high computational cost if eitharor P is sufficiently large.

Due to the vector in Equations (8) being deterniirjisve aim to acquire a solution where
both the scalars and vectors are random.

M;

() = ) g(@) g;(v) (12)

j=1

We aim to see if Equation (11) can incorporateftilestochastic nature of Equation (6).
Therefore the aim of this paper is to obtain arresgion for the response of Equation (6) that
is of the same form as Equation (11).

3 INTRODUCING THE METHOD
In order to implement our aim, the random eigeneadroblem is initially considered
A(w) ¢ (w) = Ak (w) ¢r(w); k=12, ..n (12)

For convenience, the matrices of the random eigaasaand eigenvectors df(w) are
defined as follows

A(w) = diag [1;(w), 1, (w), ..., A, (w)] € R™" (13)

P () = [¢1(w), P2(®), ..., Pp(w)] € R (14)

The random eigenvalues are arranged in ascendidgr @o A, (w) < A, (w) < - <
A.(w). The corresponding eigenvectors are arrangedhén same order. Due to the
orthogonality ofd®(w), we can deduce thdi(w)~! = ®(w)T. Thus the following identities
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can be defined«f has been omitted for notational convenience)

PTAP=A A= @ TA®P! and A=A 1T (15)
Using these identities, the response of Equatiame(ﬁ be expressed as
<I>,T( w) f

u(w)= PA 1T f=
j=1

Ty B (16)

T

Equation (16) is of the same form as Equation (/mgre(pl ((w))f

terma;(w), ¢;(w) corresponds to the vector tegn(w) andn corresponds td/,. In this
particular methode ;(w) forms a complete orthogonal basis. Thereforeait be concluded
that the response of Equation (6) can be exprassée same form as Equation (11) where
we have random scalars projected onto a stocHzesdis.

corresponds to the scalar

4 COMPUTATIONAL REDUCTION

4.1 Approximating therandom eigenvalues and eigenvectors

Approximating the random eigenvalues and eigenvect@ay improve the calculation cost
and there are numerous methods of doing so. DM&S$ can be used in collaboration with
the random eigenvalue problem in order to calculdiie exact values of the random
eigenvalues and eigenvectors; however this methadmputationally expensive. Numerous
papers have proposed improvements to the direct M€Bod. [5] uses a subspace iteration
scheme with carefully selected start-vectors, wHi§ compares the subspace iteration
method with an approach that uses component madkhesis. [7] proposes a method of
obtaining the random eigenvalues and random eiggeongethrough expanding the random
eigenvalues and eigenvectors by a polynomial claapsoach. However this method is
computationally expensive. Due to its low compotsl cost, a first order perturbation
approach for obtaining the random eigenvalues aygheectors has been explored.

Solutions of different perturbation methods areaot®d by truncating the Taylor series
expansion. Due to its efficiency and ease, thst @irder perturbation method has been used.
Thejth random eigenvalue and its corresponding randgeneector is given by

M

a2,
A~ Ay + Z (ag ) £ie(w) (7)

M (18)
0o :
i~ b+ ) (%) (@)
k=1

whereé, (w) is a set of Gaussian random variables with mean aed unit variance. By
differentiating the eigenvalue equation with respec ¢, pre-multiplying with ¢]T- and

utilising that¢] ¢; = 1 can be expressed as

0y .. 0A

32, = i 3¢, Pio o
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In the instance of Equation (1%,/i = A.
k

I . A .
The derivative of¢p; with respect tcf, can be calculated by expandlg% as a linear
k
combination of the deterministic eigenvalues am@vectors [8] [9]

) r 0A

a¢ io a_ jO

3 = Z %iPr  where oy = % “
S 4 #j n

In this instancegTAzAk. This method requires all the deterministic eigdnes and
k

eigenvectors to be known. However care is need#dtihis approach as all the eigenvalues
need to be unique and the coefficient of variateeds to be of a moderate value [10]. A
simplified approach is proposed in [11] where oalyimited number of eigenvalues and
eigenvectors is needed. For the case of repeaehwlues, the general method of
approximating the response of Equation (6) consnte be valid. However a different
approach would be needed whilst approximating tigensolutions to that given in this
section. This case is beyond the scope of thisrpape

Other approaches based on the perturbation metaeel been proposed to approximate
random eigensolutions. An approach based on therpation method and the Rayleigh
guotient is presented in [12]; this method resudtan improvement in the accuracy of the
eigensolution. However [13] reports that the aacyrof the approximations obtained by the
first order perturbation method and the methodgmel in [12] deteriorates if the uncertainty
in the system is sufficiently large. [13] proposesthods to suffice this problem with one
being the Padé approximation which is seen in [14].

4.2 Truncation

The series given in Equation (16) can be truncafest a certain amount of terms. The
high terms of the summation have a relatively l@lue due to the eigenvalues being ordered
ascendingly; this allows the low valued terms todisearded whilst retaining the dominant
terms in the series. The number of terms retaimétuation (16) can either be predefined or
determined by

A
T2 < €urune (21)
to
whereA,  corresponds to the first, and therefore the sistatleterministic eigenvalue aig
to thetth deterministic eigenvalue. The valuetofvould then correspond to the number of
terms to be retained in the truncation. The valug,. is to be selected appropriately. Hence
Equation (16) can be truncated as follows

— ¢l (w) f
Aj(w)

where4;(w) and¢;(w) represent the random eigenvalues and the randgemwctors. A
low-cost MCS is performed in order to obtain thk fesponse oft(w).

u(w) =

¢j(w) (22)

j=1
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5 ERROR MINIMISATION

In Section 3, an approximation for the responsdordtas been proposed where random
scalars are projected onto a stochastic basis. ha¥e also shown that it's possible to
approximate the random eigensolutions in Sectidn 4However these approximations in
addition to the truncation introduced in Sectio2 ihtroduces error into the calculation. This
has motivated an error minimisation appraoch, asdaaconsequence, two Galerkin
approaches have been considered:

* A weak Galerkin approach [SPWG]
» A strong Galerkin approach [SPSG]

The SPWG approach is initially considered.

5.1 A weak Galerkin approach [SPWG]

For this approach, the solution vector is moditedake the following form
t

_ ¢! (w) f
W)~ ) g (W) $,(w) 29

where 1;(w) € R and ¢;(w) € RNV represent the random eigenvalues and eigenvectors,
f € RV*N the deterministic applied force ande R* are deterministic constants which need
to be determined. The residual vector for thisrtbe approach is defined as

ri(w) = A(w)u(w) — f (24)

By making the residual orthogonal to a basis funmctthe deterministic scalacgcan be
computed. As Equation (23) can be viewed as aeption onto a subset of the random
eigenvectors, the residual can be made orthogorthetsame subset of random eigenvectors.

r1(w) L ¢p(w) V k=1,2,..,t (25)

j=1

Here (v (w),w (w)) = fw v(w)w(w)P(dw) defines the inner product norm. By using
this condition and the expression for the residoaé& has

G T
E { ¢k () |A (w) ZC; (%) ¢j(w) |=f|r=0 (26)
j=1 /

whereE{m} donates the expected value. For notational caemea, we can defing;(w) =
(¢,T-(w)f
Aj(w)

), thus it can be shown that Equation (26) can takdollowing form

E{ Y $L(@) AW) ¢;(@) B (@) ¢ = Bl (@)}f @
j=1

By defining the vectot = [cy, ¢y, ..., ¢;]T, Equation (27) can be simplified to
E{Z(w)} c = E{y(w)} B k=12,..,t (28)
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where Zyj= ¢ (w) A(w) ¢;(w) pj(w);, Vjk=12,..,t¢, and
y(w)=¢,(w) f; V k=1,2,..,t. Therefore by solving the set of linear equatigiven
by Equation (28), an explicit closed form for theknown coefficients can be obtained. The
arising expected values can be computed by usimglder fast Monte Carlo Simulations.

5.2 A strong Galerkin approach [SPSG]

In a similar manner to the previous approach, thatien vector can be modified to take
the following form

(w) ~Zd< ) ( A(( ))f> %;(®) @

where 1;(w) € R and ¢;(w) € ]RNXN represent the random eigenvalues and eigenvectors,
f € RV*N the deterministic applied force. Contrary to fitevious approachi;(w) € R are

unknown constants that need to computed for eaalisation. The residual vector for this
approach is defined as

ry(w) = A(w)u(w) — f (30)

By making the residual orthogonal to a basis fumctd;(w) can be computed. By using
the same analogy as seen in the previous apprteeihesidual can be made orthogonal to a
subset of random eigenvectors.

ry(w) L ¢p(w) V k=1,2,..,t (31)

Thus resulting in the following expression

¢} (w) f

oL () |A (@) Zd,-(w)(
=1

¢ (@) f

). Therefore, the above
Aj(w)

For notational convenience, we can defiﬁ;a(w)z(

expression can be manipulated to give

> B AW) ¢;() f; (@) (@) | = (@) f )
j=1

where d;(w) would be computed for each realisation. By definie vectord(w) =
[di(w),dy(w), ..., d(w)]T, Equation (23) can be simplified to

Z(w) d(w) = y(w) Jk=12,..,t (34)
where Zyj = ¢ (w) Alw) ¢;(w) pij(w);, Vjk=12,..,t¢, and
yw)= ¢(w)f; V k=12,..,t. The number of equations that need to be solned i

order to calculate the unknown vectdfw) corresponds to the value of Therefore,
similarly to the weak Galerkin approach, the lowes dimension of the reduced system, the
fewer the number of equations that need to be dolve
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5.3 A summary of the different methods

Thus far we have discussed four different meth@dsémputing and approximating the
response of Equation (6):

» Directly solving in order to compute the exact siol (Equation (7)) [DMCS]

* Approximating the solution by projecting random lacs onto a stochastic basis
(Equation (16)) [SP]

* Approximating the solution by projecting a randogalar onto a stochastic basis
(including a weak Galerkin error minimisation apgeb) (Equation (23)) [SPWG]

* Approximating the solution by projecting a randogalar onto a stochastic basis
(including a strong Galerkin error minimisation amgch) (Equation (29)) [SPSG]

* Approximating the solution by polynomial chaos (Btian (9)) [PC]

In the subsequent section, these five methods ppded to a static Euler-Bernoulli
cantilever beam. The effectiveness and efficiefythe approximation methods are
scrutinised.

6 APPLICATION

The computational method has been applied to arerfBdrnoulli cantilever beam
clamped at one end i.e. the displacement at tmeped end is zero. A deterministic vertical
point load is applied at the free end of the beahereP = 1.00 N. The length of the beam
under consideration is 1.00 m, and its cross-sedsi@ rectangle of length 0.04 m and height
0.005 m. Figure 1 illustrates the system.

P=1.00N l

] Elh:0.00Sm

L=1.00m w=0.04m

MMM

Figure 1: The configuration of the cantilever beam

The system has been discretized into a 100 elenmntssing SFEM. Details of the
discretization can be found in numerous books ghioly [16]. Consequently, the dimension
of the corresponding determinant matrix is 20Q00. For the deterministic case, the Young's
modulus isE = 200x 10° Nm thus corresponding to a steel beam. The detestitirsiecond
moment of area (moment of inertia) of the beam 16@7x 10! m*.

[ 0.04 x 0.0053
B 12

The bending rigidity of the beami], can be assumed to be a stationary Gaussian random
field of the form

= 4.1667 x 10711 m* (35)

El (x,w) = EI (1 + a(x, w)) (36)
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whereE!l = 83.33 Nm?. The functiona(x, w) represents a stationary Gaussian field with zero
mean, withx being the coordinate direction of the length @& ieam. The standard deviation
is given by0.18 x EI, and the covariance function by

Ca(xl’xz) — O'ge( |X1—X2| )/ Ha (37)

where u, is the correlation length and,the standard deviation. In this instance, the
correlation length is set as 0.50m. The KL expamsf the stiffness matrix, given by
Equation (3), has been truncated and two terms bese kept.

All the methods listed at the conclusion of Sectdmave been simulated 10,000 times and
the performances of the approximation methods coedpaith that of the DMCS approach.
For the SP, SPWG and SPSG methods, Equations(28)and (29) have been truncated to
only include the first 4 terms.

0.1

—— All eigenvalues
@ Selected eigenvalues 0.08

k 0.06
i 0.04

0.02

107

Eigenfunction

-0.02

Ratio of the chosen eigenvalues

FS

-0.04

L . L L -0.06 L . L L
0 20 40 60 80 100 0 02 0.4 0.6 0.8 1

Eigenvalue number Position along the beam (m)

107

(a) Ratio of eigenvalues (b) The first four eigertoes

Figure 2: Deterministic eigensolutions of the damer beam

Figure 2a illustrates the ratio between the fired ¢hejth eigenvalue of the deterministic
system and the first four eigenvalues have bednliplged. Figure 2b illustrates the first four
eigenvectors of the deterministic system.

The displacement of the beam can be normalised by

_fe (38)
3EI

A detailed reference to this value is give in [18his normalisation value ensures that the
deterministic vertical displacement has a valué af the tip. Figures 3a and 3b illustrate the
mean and standard deviation of the normalisedoatrdisplacement at all nodes of the beam.
It is apparent that all the approximation methodptares the mean of the DMCS method
pretty well. The SPSG method best captures thedatd deviation of the DMCS method,
whilst both the SP and SPWG methods considerabiypetforms the PC approach. The
percentage error of the vertical displacementragisvhen using the SP, SPWG, SPSG and
the PC methods in place of the DMCS method istided in Figures 3c and 3d. The
percentage error is given by

h

IDMCS — CM|
DMCS

(39)

€0, = 100 X
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where DMCS indicates the solution of the direct approach, &M the solution of the
comparable methods. Barring the initial 0.20mhef bar, the percentage error of the mean
and standard deviation of the SP, SPWG and SPSGodgetre considerably lower than that
of the PC method. When comparing the SPWG and SiR8Bods it is apparent that the
percentage error of the mean is always slightlyelowhen the SPSG method is used.
However when comparing the percentage error ofsthedard deviation, barring the initial

0.30m

Mean of the normalized deflection
(=]

Percentage etror of mean

of

02 0.4 0.6 0.8 1
Position along the beam (m)

(a) Mean of the vertical displacement

Position along the beam (m)

(c) Percentage error of the mean

35

0.18

the

0.16

e
=

0,12

0.06

Standard deviation of
the normalized deflection

=4
=)
b

e
=)
1

0.08 |

=)

0.2 0.4 0.6 0.8 1
Position along the beam (m)

bar,

(b) Standkedation of the vertical displacement

30

=)
s

ra

Percentage error of standard deviation
= :

"""""""""" = - SP
» —SPWG
~ - - -SPSG
. 0 PC
b
.
R
o
.
.
.
o

-

" " -

0.4 0.6 0.8 1

Position along the beam (m)

(d) Percentage @efrthe standard deviation

Probability density function
2w %

in

——SPWG 1]

(e) Probability density function of the verticabgiacement at the tip of the cantilever beam

e}
Normalized vertical deflection at the tip (m)

2 2.5
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the SPSG method considerably outperforms the SPVéthad. The pdf of the vertical
displacement at the tip for the DMCS, SP, SPWG,&R8d PC methods is illustrated in
Figure 3e.

The L? relative error for the mean and standard deviatibtine response of the cantilever
beam is considered. TIié relative error of the mean is defined as

_ lpomes — pem ll2

€2 = (40)

leprcsllz

whereupycs denotes the mean of the response vector obtaynedibg the DMCS method
anduc,, the mean of the response vector of the companabthods. Table 1 displays the
relative error for the mean. The expression ferlthrelative error of the standard deviation
takes a similar form to that of Equation (4). Tiferelative error for the standard deviation
for different truncation values of Equations (1&3) and (29) and the PC approach is
displayed in Table 2.

Number sp SPWG SPSG | PC
of terms :
1 0.0226 0.0226 0.0226 -
2 0.0063 0.0058 0.0058 | -
3 0.0031 0.0019 0.0019 ! -
4 0.0036 9.59x 10* 9.07x 10* | -
5 0.0025 6.37x 10* 5.54x 10° -
6 0.0025 4.56x 107 3.30x 104 -
R L 0.0025 3.28x10° ! 9.54x10° | T
- - - 0.0017

Table 1: L? error arising in the mean of the response for eddhe reduced methods

Number sp SPWG SPSG | PC
of terms !
1 0.0426 0.0426 0.0426 ! -
2 0.0092 0.0092 0.0029 ! -
3 0.0099 0.0099 0.0016 ! -
4 0.0101 0.0101 0.0010 ! -
5 0.0102 0.0101 5.14x 10° | -
6 0.0102 0.0102 3.56x% 10% -
T 0.0102 00102  9.88x10° : T
- - - 0.0635

Table 2: 12 error arising in the standard deviation of thepmesse for each of the reduced methods

Except for when only one term is used in the sunonat in comparison to the SP method
the SPWG and SPSG methods lowerltheelative error for the mean. When considering the
L? relative error for the standard deviation, the SPWethod does not seem to significantly
lower the error. However barring when only onertes kept in each of the summations, a
substantial drop in thé? relative error is seen when the SPSG method id. uges theL?
relative errors tend to decrease as the numbeeraist in the summations increase, it is
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apparent that the truncation value can be chosknemnvith an acceptable level of error.
Table 3 contains the CPU times for the five methatilempted. The computational cost
was calculated on a standard 24 GB RAM computdr avi8.60 GHz processor.

M ethod DMCS SP SPWG SPSG PC
CPU (sec) 10.21 0.76 3.25 3.24 0.84

Table 3: Computational time

Regarding CPU, the SP method outperforms the @pproximation methods. Although
that using the SPWG and SPSG methods is fasterttieaDMCS method, the PC method is
faster. However when the order of the PC methothernumber of degrees of freedom is
sufficiently increased, the CPU of the PC metholll substantially increase and in turn, will
be higher than the SPWG and SPSG methods. Genéradin be concluded that the SPSG
method outperforms the SPWG method as it produess érror in a similar CPU time.
However the SPWG method does not need as muchgstaapacity as the SPSG method.
For the SPWG method ontyscalars need to be stored, whilst the SPSG metitpdres {
number of samplescalars to be stored.

7 CONCLUSION

An approach has been suggested to calculate thenss of discretized stochastic elliptic
partial differential equations. Through utilisitige stochastic finite element method and the
random eigenvalue problem, it has been proventtigasolution can be represented through
projecting random scalar onto a random basis. tDulke high computational cost associated
with calculating the exact solution, a reduced apph is proposed where random eigenvalues
and eigenvectors are approximated and low valuechsteare discarded. Two novel
multiplicative Galerkin error minimisation approashhave been presented. One being a
weak Galerkin approach and the other being a stfadalgrkin approach. Both approaches
have been presented through projecting residudls mmdom eigenvectors. The proposed
methods have been used to analyse the bendingtatia Euler-Bernoulli cantilever beam.
The solutions obtained through the proposed methwise been compared with those
obtained through direct MCS and through using gmpwhial chaos method. Although both
error minimisation approaches lowers the errorhaf mean, it is only the strong Galerkin
error minimisation approach that substantially losvéhe error arising in the standard
deviation. However the computational time is digantly lower when the error
minimisation methods are not used. Further woiklve carried out would focus on efficient
ways of computing random eigenfunctions and perilogrmodel-order reduction.
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