| Course Title: | PYTHON PROGRAMMING AND QUANTUM PHYSICS | |---------------|---| | Instructor | Salvatore Lorenzo | | N of hours | 20 | | Description | Introduction to scientific computing using the increasingly popular programming language Python with its rich set of open source libraries. | | Contents | Introduction to Python: Installation, Anaconda3, IPython, JupiterLab, Spyder Basics of Python programming (lists, tuples,data types,operators, if statements, functions,) Integrals and derivatives Ordinary differential equations Manipulating numerical data with Numpy Plotting with Matplotlib Simulating quantum physics with QuTiP. Lindblad Master equation solver Manipulating States and Operators Superoperators and Vectorized Operators - Using Tensor Products and Partial Traces - Superoperators and Tensor Manipulations Time evolution and Quantum System Dynamics - Lindblad Master equation solver Monte Carlo solver Time dependent Hamiltonians |