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We show that the increments of generalized Wiener process, useful to describe non-
Gaussian white noise sources, have the properties of infinitely divisible random processes.
Using functional approach and the new correlation formula for non-Gaussian white noise
we derive directly from Langevin equation, with such a random source, the Kolmogorov’s
equation for Markovian non-Gaussian process. From this equation we obtain the Fokker—
Planck equation for nonlinear system driven by white Gaussian noise, the Kolmogorov—
Feller equation for discontinuous Markovian processes, and the fractional Fokker—Planck
equation for anomalous diffusion. The stationary probability distributions for some
simple cases of anomalous diffusion are derived.

Keywords: Non-Gaussian white noise; infinitely divisible distribution; Kolmogorov’s
equation; Wiener process.

1. Introduction

Stochastic dynamics is useful to model many biological, chemical, economical and
physical systems. The random driving forces have very different origins, in most
cases they are Gaussian white or colored noise sources, but often these forces must be
considered as non-Gaussian ones, for example, in sensory and biological systems [1].
Moreover, in many physical and biological systems a deviation of real statistics of
fluctuations from Gaussian law, leading to anomalous diffusion, is observed [2,3]. A
suitable mathematical model to describe the anomalous diffusion is the fractional
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LEVY FLIGHT SUPERDIFFUSION:
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After a short excursion from the discovery of Brownian motion to the Richardson “law of four
thirds” in turbulent diffusion, the article introduces the Lévy flight superdiffusion as a self-similar
Lévy process. The condition of self-similarity converts the infinitely divisible characteristic func-
tion of the Lévy process into a stable characteristic function of the Lévy motion. The Lévy
motion generalizes the Brownian motion on the base of the a-stable distributions theory and
fractional order derivatives. Further development on this idea lies on the generalization of the
Langevin equation with a non-Gaussian white noise source and the use of functional approach.
This leads to the Kolmogorov’s equation for arbitrary Markovian processes. As a particular case
we obtain the fractional Fokker-Planck equation for Lévy flights. Some results concerning sta-
tionary probability distributions of Lévy motion in symmetric smooth monostable potentials,
and a general expression to calculate the nonlinear relaxation time in barrier crossing prob-
lems are derived. Finally, we discuss the results on the same characteristics and barrier crossing
problems with Lévy flights, recently obtained by different approaches.

Keywords: Lévy process; Lévy motion; Lévy flights; stable distributions; fractional differential
equation; barrier crossing.
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of deterministic approach. The second one demands

Two kinds of motions can easily be observed in
Nature: smooth, regular motion, like Newtonian
motion of planets, and random, highly irregular
motion, like Brownian motion of small specks of
dust in the air. The first kind of motion can be
predicted and consequently, described in the frame
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the statistical approach.

The first man who noted the Brownian motion
was the Dutch physician, Jan Ingen-Housz in 1794,
who, while in the Austrian court of Empress Maria
Theresa, observed that finely powdered charcoal
floating on an alcohol surface executed a highly
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