FACOLTÀ	Ingegneria
ANNO ACCADEMICO	2011-2012
CORSO DI LAUREA	Ingegneria Elettrica - Caltanissetta
INSEGNAMENTO	Principi di Ingegneria Elettrica
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Ingegneria Elettrica
CODICE INSEGNAMENTO	05767
ARTICOLAZIONE IN MODULI	SI
NUMERO MODULI	2
SETTORI SCIENTIFICO DISCIPLINARI	ING-IND/31
DOCENTE RESPONSABILE	FABIO VIOLA (6 CFU) Ricercatore non
(MODULO 1)	confermato
	Università degli Studi di Palermo – DIEET
DOCENTE COINVOLTO	GUIDO ALA
(MODULO 2)	Professore Associato confermato
	Università degli Studi di Palermo - DIEET
	http://www.dieet.unipa.it/ala
CFU	12
NUMERO DI ORE RISERVATE ALLO	195
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	105
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Nessuna, ma si consiglia di avere acquisito
	preliminarmente all'inizio del corso, le
	competenze relative ai corsi di matematica 1 e 2
	e di Fisica 1 e 2
ANNO DI CORSO	Secondo
SEDE DI SVOLGIMENTO DELLE	Via Real Maestranza
LEZIONI	Caltanissetta
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, Esercitazioni in aula
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Primo semestre
CALENDARIO DELLE ATTIVITÀ	L'orario delle lezioni è consultabile sul sito del
DIDATTICHE	corso di laurea:
	http://portale.unipa.it/Ingegneria/cdl/elettricacl
ORARIO DI RICEVIMENTO DEGLI	Un'ora prima ed un'ora dopo le lezioni di
STUDENTI	calendario, durante il periodo delle lezioni; in
	altri periodi, previo appuntamento telefonico o
	per e-mail

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

L'allievo, al termine del corso, avrà acquisito conoscenze e capacità di comprensione su:

- metodi di analisi delle reti elettriche lineari in regime stazionario, in transitorio, in regime sinusoidale;
- metodi di analisi delle reti elettriche lineari nel dominio della frequenza;
- metodi di analisi dei sistemi trifase;

• metodi di analisi dei dispositivi elettromagnetici che coinvolgono gli aspetti riguardanti il campo elettromagnetico in regime stazionario e quasi-stazionario, con particolare riferimento alle applicazioni tipiche nei campi dei sistemi elettrici per l'energia, delle macchine elettriche, dell'elettronica applicata ai sistemi industriali automatizzati.

Capacità di applicare conoscenza e comprensione

L'allievo, al termine del corso, sarà in grado di:

- discernere nel contesto di reti elettriche lineari i diversi fenomeni fisici, individuando relazioni di causa ed effetto, identificando, formulando ed analizzando tali fenomeni per mezzo di metodi, tecniche e strumenti aggiornati;
- applicare i principali teoremi delle reti elettriche lineari;
- impostare l'analisi nel dominio del tempo delle reti elettriche lineari;
- impostare l'analisi frequenziale delle reti elettriche lineari;
- impostare l'analisi di sistemi trifase simmetrici e dissimmetrici, equilibrati e squilibrati;
- identificare, formulare e analizzare i problemi elettromagnetici tipici dell'Ingegneria Elettrica utilizzando metodi, tecniche e strumenti aggiornati.

Autonomia di giudizio

L'allievo avrà acquisito l'autonomia necessaria per poter giudicare criticamente i risultati dell'analisi elettromagnetica stazionaria e dell'analisi circuitale.

Abilità comunicative

L'allievo avrà acquisito la capacità di comunicare ed esprimere con buona proprietà di linguaggio gli aspetti fondamentali relativi all'analisi elettromagnetica in regime stazionario e quasistazionario ed all'analisi dei circuiti lineari in qualunque regime, offrendo anche soluzioni standard in contesti specializzati.

Capacità d'apprendimento

L'allievo sarà in grado di:

- affrontare lo studio dei dispositivi elettromagnetici e delle macchine elettriche tipicamente impiegati nei sistemi elettrici di potenza ed avrà acquisito gli elementi per approfondire i criteri e le modalità connesse con la loro progettazione di massima;
- affrontare lo studio dei sistemi elettrici di potenza con particolare riferimento agli impianti elettrici nelle applicazioni civili e industriali del terziario;
- affrontare lo studio dei sistemi elettronici.

OBIETTIVI FORMATIVI DEL MODULO 1

- Acquisizione del principio di funzionamento dei modelli circuitali dei principali componenti: resistori, condensatori, induttori, induttori accoppiati, generatori indipendenti, generatori pilotati, trasformatore ideale, doppi bipoli, multipoli;
- Acquisizione delle competenze relative all'analisi delle reti elettriche lineari in regime stazionario, in transitorio, in regime sinusoidale, impiegando metodi nel dominio del tempo, e nel dominio dei fasori;
- Acquisizione delle competenze relative all'analisi delle reti elettriche lineari concentrate nel dominio della frequenza;
- Acquisizione delle competenze relative all'analisi dei sistemi trifase;
- Acquisizione delle competenze relative all'analisi di reti 2-porte.

MODULO 1	DENOMINAZIONE DEL MODULO: Circuiti
ORE FRONTALI	LEZIONI FRONTALI
1	Obiettivi della disciplina e sua suddivisione. Diversificazione dell'analisi di circuiti elettrici:
	circuiti a parametri concentrati e distribuiti.

4	Il bipolo elettrico. Tensione e corrente. Condizioni di riferimento associate. Potenza elettrica.
	Funzione energia. Resistore, capacitore, induttore, circuito aperto, cortocircuito, diodo. Piani
	di definizione dei bipoli, correlazioni tra tensione e corrente. Bipoli lineari tempo invarianti e
	tempo varianti. Bipoli in serie ed in parallelo. Interpretazione grafica.
3	Elementi attivi: generatori di tensione e di corrente. Parallelo e serie di generatori: casi
	ammissibili e non. Generatori reali. Generatori controllati.
2	Definizioni di rete, nodo e ramo. Principi di Kirchhoff. Esempi di applicazione dei principi di
	Kirchhoff.
3	Principali metodi e teoremi dei circuiti elettrici lineari: principio di sovrapposizione degli
	effetti, metodo delle correnti di anello, metodo dei potenziali nodali, teorema di Thevenin,
	teorema di Norton, teorema di Tellegen, teorema di Millman, teorema del massimo
	trasferimento di potenza.
4	Analisi dei circuiti del primo ordine nel dominio del tempo. Circuiti RC e RL. Equazione
	differenziale del primo ordine lineare omogenea e a coefficienti costanti. Equazioni non
	omogenee e circuiti autonomi.
6	Soluzione dell'equazione differenziale del secondo ordine. Circuiti RLC serie e parallelo.
	Risposta libera e risposta forzata. Frequenze naturali nel piano complesso. Stabilità. Cenni
	sull'analisi dei circuiti mediante le variabili di stato.
4	Funzioni periodiche. Definizione di rete in regime sinusoidale. Metodi di risoluzione
	tradizionale per mezzo di leggi trigonometriche. Trasformata fasoriale. Applicazione delle
	leggi di Kirchhoff nel dominio dei fasori. Operazione di derivazione ed integrazione nel
4	dominio dei fasori. Trasformazione dei bipoli nel dominio dei fasori. Sfasamento e fattore di potenza. Potenza in regime sinusoidale: potenza attiva, reattiva ed
4	apparente. Triangolo delle impedenze, triangolo delle tensioni, triangolo delle potenze. La
	potenza su resistori, induttori e condensatori. Circuiti RLC serie e parallelo. Risonanza.
	Rifasamento.
2	Risposta in frequenza
2	Sistemi trifase. Connessione dei generatori e dei carichi a stella ed a triangolo. Potenza
	istantanea e media per un carico trifase bilanciato. Vantaggi economici dell'impiego dei
	sistemi trifase.
2	Definizione di multiplo e doppi bipoli, porta di ingresso e porta di uscita. Definizione dei
	modelli a parametri impedenza, ammettenza, ibridi e di trasmissione. Connessioni tra doppi
	bipoli.
2	Fenomeni magnetici. Mutui accoppiamenti. Trasformatore ideale.
Totale: 39	
	ESERCITAZIONI
1	Applicazioni delle leggi di Kirchhoff a circuiti generici.
2	Applicazione dei metodi dei potenziali di nodo e delle correnti di anello. Applicazione del
	teorema di Thevenin e di Norton.
2	Analisi di reti bi-porta.
1 2	Risoluzione di circuiti dinamici del primo ordine.
2	Risoluzione di circuiti dinamici del secondo ordine.
2	Applicazione delle leggi di Kirchhoff in regime sinusoidale. Risoluzione di reti impiegando i
2	principali metodi e teoremi.
2	Risposta in frequenza di circuiti passivi
3	Risoluzione di reti trifase. Risoluzione di circuiti con mutui induttori.
Totale: 16	KISOIUZIOIIE UI CITCUIUI CON MUIUI INQUITOTI.
TESTI	PERFETTI R: "Circuiti elettrici" - Zanichelli, 2003
CONSIGLIATI	FERTETTI K. Cheunt eletther - Zamenem, 2005
CONSIGLIATI	I .

OBIETTIVI FORMATIVI DEL MODULO 2

- Acquisizione delle competenze relative all'analisi del campo elettrico di configurazioni di elettrodi in mezzi isolanti, attraverso il metodo delle sorgenti equivalenti;
- Acquisizione delle competenze relative all'analisi del campo di corrente di configurazioni di elettrodi in mezzi dissipativi, attraverso il metodo delle sorgenti equivalenti;
- Acquisizione delle competenze per l'analisi dei circuiti magnetici;
- Capacità di valutare i parametri di capacità, induttanza, mutua induttanza di configurazioni canoniche;
- Acquisizione del principio di funzionamento dei convertitori elettromeccanici;
- Acquisizione dei concetti fondamentali di propagazione del campo elettromagnetico.

MODULO 2	DENOMINAZIONE DEL MODULO: Campi	
ORE FRONTALI	LEZIONI FRONTALI	
4	Analisi vettoriale: operatori gradiente, divergenza, rotore; tubi di flusso e loro	
	caratterizzazione; campi notevoli e loro proprietà	
4	Il campo elettrico in regime stazionario	
4	Il campo di corrente in regime stazionario	
8	Il campo magnetico in regime stazionario e quasi stazionario	
10	Determinazione di parametri globali di capacità, induttanza, mutua induttanza con riferimento	
	a geometrie semplici	
4	Circuiti magnetici	
1	Il campo elettromagnetico in regime sinusoidale	
2	Principi di propagazione delle onde elettromagnetiche	
Totale: 37		
	ESERCITAZIONI	
2	Analisi di configurazioni tipiche di elettrodi in mezzi isolanti per la valutazione della	
	distribuzione del campo elettrico e del potenziale scalare elettrico in regime stazionario	
3	Analisi di configurazioni tipiche di elettrodi in mezzi dissipativi per la valutazione della	
	distribuzione del campo di corrente e del potenziale scalare elettrico in regime stazionario	
2	Analisi di configurazioni tipiche di strutture elettriche ed elettromeccaniche per la	
	valutazione della distribuzione del campo magnetico in regime stazionario e quasi stazionario	
4	Applicazioni relative alla determinazione dei parametri globali di capacità, induttanza, mutua	
	induttanza con riferimento a geometrie semplici	
4	Analisi di circuiti magnetici	
Totale: 15		
TESTI	• M. Guarnieri, A. Stella: "Principi ed Applicazioni di Elettrotecnica" volume primo –	
CONSIGLIATI	Edizioni Progetto Padova, 2002.	
	• M. D'Amore: "Elementi di Elettrotecnica - Campi e circuiti" - Edizioni Scientifiche	
	SIDEREA, 1995.	
	• Esercitazioni proposte dal docente: http://www.dieet.unipa.it/ala/Esercitazioni.htm	