

WWTP modelling

Hydraulic model

- Deduced from mass balances
- Depends on each WWTP
- Kinetic model
 - Rate equations
 - Common for similar processes

The most common kinetic models have been developed by workgroups of the **International Water Association (IWA)** and are known as **Activated Sludge Models (ASM)**. The most used models are:

ASM1	COD + N
ASM2d	COD+ N + P
ASM3	COD + N with COD accumulation by heterotrophic organisms
ADM1	Anaerobic digestion of COD

These models take into account different types of microorganisms and numerous substrates and products. Usually they are described using a matrix notation.

Hy	drolysis of p	articulate substrate: X _S		100 plus 1
K _H	3.00	d -	Hydrolysis rate constant	UNIVERSITÀ
n _{NO}	3 0.60		Anoxic hydrolysis reduction factor	DI FILLIONO
II fe	0.40	- 0. /3	Contraction (addition and Contractor	
No V.	2 0.20	g O ₂ /m	Saturation/inhibition coefficient for oxygen	
KN K	03 0.30	g IN/m	Saturation/innioition coefficient for nitrate	
	0.10	g As (gAg)	Saturation coefficient for particulate COD	
	6.00	« X _e («X _e) ⁻¹ d ⁻¹	Maximal growth rate on substrate	
u _H	3.00	a Va (aVa) ¹ d ¹	Maximal formentation rate	
qte		E YZ (EYH) d	Reduction factor for denity faction	
in No.	0.30	a-1	Lysis rate constant	
VH K	0.40	a O./m ³	Saturation/inhibition coefficient for orregen	
K-	2 0.20	a COD m ⁻³	Saturation coefficient for growth on SE	
K.	4.00	a COD m ⁻³	Saturation coefficient for formentation on SE	
i ste	4.00	= COD m ⁻³	Saturation coefficient for restation on ST	
NA V	4.00	g COD m	Saturation coefficient for acetate	
KN V	03 0.50	g 19 m	Saturation minoriton coefficient for hitrate	
KN	H4 0.05	g iv mi	Saturation coefficient for SIVIT4 as numerit	
Kp V	0.01	g P m	Saturation coefficient for SPO4 as nutrient	
- NA	LK 0.10	mole nCO m	Saturation coefficient for alkalinity	
Pn	ospnorus-ac	Cumulating organisms: APAO	Potential Constant Contractor	
QPH	A 5.00	(g Apha (g Apao) d	Rate constant for storage of APRA	
Qpp	1.50	(g APHA(g APAO) ' d	Kate constant for storage of APP	
upA	0 1.00	a	Padantian Growth rate of APAO	
n _{NO}	0.00		Reduction factor under anoxic conditions	
DPA	0 0.20	d hel	Kate for lysis of XPAO	
Брр	0.20	d	Kate for lysis of APP	
6 _{PH}	A 0.20	a	Kate for lysis of APRA	
K ₀	2 0.20	g O ₂ m	Saturation coefficient for oxygen	
K _N	03 0.50	givm.	Saturation coefficient for nitrate	
KA .	4.00	g COD m	Saturation coefficient for acetate	
KN	H4 0.05	g N m	Saturation coefficient for ammonium	
Kp	0.20	g P m	Saturation coefficient for phosphate for XPP formation	
Kp	₂₄ 0.01	gPm ⁻	Saturation coefficient for phosphate for growth	
K _A	LK 0.10	mole HCO" m	Saturation coefficient for alkalimity	
K _{Pl}	, 0.01	g Xpp(g XpAO)	Saturation coefficient for polyphosphate	
K _M	AX 0.34	g Xpp(g XpAO)-1	Maximum ratio of XPP/XPAO	
KI	P 0.02	g Xpp(g Xpao)-1	inhibition coefficient for polyphosphate storage	
Kp	IA 0.01	g XPHA (g XPAO)-1	Saturation coefficient for PHA	
Nu	nfying orga	a-1 autotrophic organisms	Maximal growth rate of substrankia historic	
u _{At}	0.15	a-1	Deepy rate if autotrophic biomass	
U.A.	T 0.15	°	Decay rate in autorophic oromass	
Ko	2 0.50	g O ₂ m	Saturation/inhibition coefficient for oxygen	
K _N	H4 1.00	g N m	Saturation coefficient for SP/H4	
KA	LK 0.50	mole nco m	Saturation coefficient for aikalinity	
Kp	0.01	grm-	Saturation coefficient for SPO4	
<u></u>	emical phos	phorus removal	no con no tract	
k _{PB}	E 1.00	m" (gFe(OH)3)" d"	Kate constant for P precipitation	
k _{RF}	D U.60	a .	Nate constant for redissolution	
KA	_{LK} 0.50	mole HCO" m	Saturation coefficient for alkalinity	

																UNIVERSIDE	Ac 100	tivate) plus	d sludg l years	ge: ands and spectives
	Table A3. Stoichiom	etry matrix f	or ASM	2d (v _{ij})															
j	i: Process	S ₀₂	S ₇	S _A	S _{NH4}	SNOS	S204	S _I	SALK	S ₃₅₂	X	Xs	Xg	XPAO	Xn	X _{PEA}	XAUT	X _{TSS}	X _{M+OH}	XMar
1	Aerobic hydrolysis	1	$1-f_{SI}$		V _{1,NH4}		v _{1,PO4}	\mathbf{f}_{SI}	VLALK			-1						V _{1,TSS}		
2	Anoxic hydrolysis	1	1-f _{st}		V2,NH4		V2,P04	fs	V _{2,ALK}			-1						V2,TSS		
3	Anaerobic hydrolysis	1	1-f _{st}		V _{3,NH4}		V3,PO4	f _{st}	V _{3,ALK}			-1						v _{3,TSS}		
4	Aerobic growth on S_F	$1-\frac{1}{Y_H}$	$-\frac{1}{Y_H}$	1			-ір,вм						1							
5	Aerobic growth on $S_{\rm A}$	$1-\frac{1}{Y_H}$		$-\frac{1}{Y_H}$			-i _{P,BM}						1							
6	Anoxic growth on S _F , denitrification		$-\frac{1}{Y_H}$			$\frac{1-Y_H}{2.86 \cdot Y_H}$	-і _{Р,ВМ}			$\frac{1-Y_H}{2.86 \cdot Y_H}$			1							
7	Anoxic growth on S_A , denitrification			$-\frac{1}{Y_H}$		$-\frac{1-Y_H}{2.86 \cdot Y_H}$	-i _{P,BM}			$\frac{1-Y_H}{2.86 \cdot Y_H}$			1							
8	Fermentation		-1	1																
9	Lysis										\mathbf{f}_{NI}	$1-f_{\rm XI}$	-1							
10	Storage of X _{PHA}			-1			Y _{PO4}								-Y _{P04}	1				
11	Aerobic storage of $X_{\ensuremath{\text{PP}}}$	-Y _{PHA}					-1								1	-Y _{PHA}				
12	Anoxic storage of $X_{\mbox{\scriptsize PP}}$					V12,N03	-1			-V12,N03					1	-YPHA				
13	Aerobic growth $X_{\mbox{\scriptsize PAO}}$	$v_{13,02}$					-i _{P,BM}							1		$-\frac{1}{Y_{PSO}}$				
14	Anoxic growth X_{PAO}					V14,N03	$-i_{P,BM}$			-V _{14,N03}				1		$-\frac{1}{Y_{PAO}}$				
15	Lysis of X _{PAO}						V15,P04				\mathbf{f}_{M}	$1-f_{31}$		-1						
16	Lysis of X _{pp}						1								-1					
17	Lysis of X _{PHA}			1												-1				
18	Aerobic growth of \mathbf{X}_{A}	$-\frac{4.57-Y_A}{Y_A}$			$-i_{N,BM} - \frac{1}{Y_A}$	$\frac{1}{Y_A}$	-i _{P,BM}		V _{18,ALK}								1			
19	Lysis of X_A				V19,NH4		V19,P04				\mathbf{f}_{NI}	$1-f_{32}$					-1			
20	Precipitation						-1		V _{20,ALK}									1.42	-3.45	4.87
21	Redissolution						1		V _{21,ALK}									-1.42	3.45	-4.87
	Biological nu	itrient rem	oval: r	nathe	ematica	l modelli	ngas	a go	od str	ategy fo	or co	ntrol	syste	em de	sign (J.A. Ba	aeza)			

M	/WTP m	od A •	elling ASM2d calibrat Influent char	tion acte	Activated sludge: 100 plus 1 years New trends an perspective
Plant dat			ASM2d state v	ariable	es:
Fiant ua	.a. <u>s</u>	ymbol	Description	Symbol	Description
		\mathbf{S}_{O2}	Dissolved oxygen concentration, $[g O_2 m^{-3}]$	X_S	Slowly biodegradable substrates, [g COD m ⁻³]
COD		$S_{\rm F}$	Readily biodegradable soluble	X_{H}	Heterotrophic organisms, [g COD m ⁻³]
BOD5		\mathbf{S}_{A}	Fermentation products VFA, [g COD m ⁻³]	X_{PAO}	Phosphorus accumulating organisms, [g COD m ⁻³]
TKN		\mathbf{S}_{I}	Inert soluble organic material.[g COD m ⁻³]	\mathbf{X}_{PP}	Polyphosphate, [g P m ⁻³]
NH_4		$S_{\rm NH4}$	Ammonium plus ammonia nitrogen, [g N m ⁻³]	$\mathbf{X}_{\mathrm{PHA}}$	Cell internal storage product of PAO, [g COD m ⁻³]
NO ₂		$\mathbf{S}_{\mathbf{N2}}$	Gaseous nitrogen, [g N m ⁻³]	$\mathbf{X}_{\mathrm{AUT}}$	Nitrifying organisms, [g COD m ⁻³]
		S_{NO3}	Nitrate plus nitrite nitrogen, [g N m ⁻³]	X_{TSS}	Total suspended solids, TSS, [g TSS m ⁻³]
PO ₄ VSS		$S_{PO4} \qquad \begin{array}{c} \text{Inorganic soluble pho}\\ \text{[g P m}^{-3}] \end{array}$		X _{MeOH}	Metal-hydroxides, involved with chemical removal of phosphorus, [g TSS m ⁻³]
TSS		S _{ALK}	Alkalinity of the wastewater, [mol HCO ₃ m ⁻³]	$\mathbf{X}_{\mathrm{MeP}}$	Metal phosphate, [g TSS m ⁻³]
		XI	Inert particulate organic material, [g COD m ⁻³]		
Biological nutrier	t removal: mathematio	cal mod	elling as a good strategy for co	ontrol syst	em design (J.A. Baeza)

W	/WTP	modelling		Activated sludge: 00 plus 1 years New trends and perspectives
		ASM2d calibration	on	
S_{ij}	$=\frac{\theta_j}{v_i}\frac{dy_i}{d\theta_i}$	Selection of pa Sensitivity analysis/	arameters to f	fit
$OS_j = S_{j,j} $	$\begin{array}{c} y_i \ u O_j \\ PO_4 \Big + \Big S_{j, NH_4} \Big \end{array}$	$+ \left S_{j,NO_3} \right + \left S_{j,XTSS} \right + \left S_{j,TKN} \right $	$FIM = \sum_{k=1}^{N} Y_{\theta}(k)$	$\cdot Q_k^{-1} \cdot Y_\theta^T(k)$
		Kinetic / Stoichiometric Group (K	group)	
Order	Parameter	Short Description	Related biomass or process	Sensitivity
1	Y _H	Yield coefficient for X _H .	Heterotrophic	756
2	μ_A	Maximum growth rate of XA	Autotrophic	678
3	b _A	Rate for lysis of X _A	Autotrophic	634
4	$\mathbf{K}_{\mathrm{NH4,A}}$	Saturation coefficient of substrate NH_4^+ for nitrification on S_{NH4}	Autotrophic	412
5	K_{PRE}	Precipitation constant	Chemical phosphate precipitation	150
6	K _{02,A}	Saturation coefficient of O ₂ for nitrification on S _{NH4}	Autotrophic	149
7	K _{RED}	Solubilisation constant	Chemical phosphate precipitation	148
8	b _H	Rate for lysis of X _H	Heterotrophic	97
9	K _{ALK,A}	Saturation coefficient of alkalinity for nitrification on S _{NH4}	Autotrophic	73
10	$\eta_{NO3,D}$	Reduction factor for denitrification	Heterotrophic	51
Biological nutrier	t removal: mather	natical modelling as a good strategy for contro	ol system design (J.A. Baeza	a)

WWTP modelling

After a proper process of **model calibration** and **validation**, we can be confident that we have a model able to provide a **good description of** the simulated variables in **that particular WWTP**

However, we need to calculate different **performance indicators** as a tool for comparison of the behaviour of the WWTP under several **operating conditions** or **control strategies**

Optimization of setpoints allows to obtain the better performance of a CS

Minimization of a Cost Function where all the criteria considered are converted to monetary units.

ANALYSED SCENARIOS

- Open Loop (OL): TSS control loop in R4. Aeration constant in R3 and R4. $Q_{RINT}/Q_I = 3$, $Q_{REXT}/Q_I = 1$.
- DO control (DOC): DO control was activated with a setpoint of 4 mg DO $L^{\text{-1}}$ in R3 and R4.
- Maximum performance for nutrient removal (MPR): Ammonia setpoint was 0 mg L⁻¹ and nitrate setpoint was optimised to minimise nitrate in the effluent.
- Ammonium and nitrate fixed optimum setpoints (A&N-FOS): Fixed optimum ammonium and nitrate setpoints.
- Ammonium and nitrate daily variable optimum setpoints (A&N-DVOS): Setpoints daily optimised according to the influent flow pattern of the plant.
- Ammonium and nitrate weekly variable optimum setpoints (A&N-WVOS): Two different sets of setpoints are optimised, one for weekend and one for the weekdays.
- Ammonium and nitrate hourly variable optimum setpoints (A&N-HVOS): Setpoints are hourly optimised according to the influent flow pattern of the plant.

Conclusions of the multi-criteria study

- Multi-criteria optimisation provides a set of optimal operation setpoints approximated by a Pareto surface. The optimised setpoint within this surface can be selected by the requirements that are established for each WWTP in terms of the three criteria.
- These requirements can be translated into monetary weights as was done with OCF. OCF optimisation results in an optimised scenario located on Pareto surface.
- The approaches of single OCF or multi-criteria are complementary. The multi-criteria function enabled a more extensive evaluation of different alternatives where none of the criterion is conditional to the other. Once the weights are selected according to the WWTP requirements, the OCF optimisation could be used to adapt the plant operation to the influent variations.

Selection of CS based on classical control tools

Relative Gain Array (RGA)

Tool for selecting decentralized control structures

Information 1: Best pairing

Information 2: Best set of variables

Control			Handle Variables								
		Ма	nipulated	Variables	(MV)	Disturbance (DV)					
M	atrix	MV1	MV2	MV3	MV4	DV1					
ŝ	CV1	1.00	0.00	0.00	0.00						
s (C	CV2	0.00	1.00	0.00	0.00						
able	CV3	0.00	0.00	1.00	0.00						
C(Vari	CV4	0.00	0.00	0.00	1.00						

Cascade + Override Phosphorus Control Strategy (COPCS)

Activated sludge: 100 *plus* 1 years (1-1)

Modelling and equipment limitations ... and consequences in control design

- Analysers precision is limited.
 - Several setpoints reported in the literature cannot be achieved in practice. A sensitivity analysis of optimised controllers setpoint should be performed.
- Manipulated variables have a limited range of operation.
 - · Limits must be considered for all the equipment.
 - Anti wind-up controllers should be used.
- Optimization of controller setpoint provides better improvements than the perfect tuning
 of the controller.
- Sensors dynamics should be considered, but the WWTP dynamics is usually much slower.
- Only water line is usually modelled for control. Internal P inputs from reject water and other recycle streams should be also considered.

Application of Non-Square Relative Gain Array (NSRGA) to WWTP with EBPR

C	Outputs	Inputs			
		Q _{COD}	Q _{RINT}	Q _{REXT}	
S	_{PO4} R2	$\frac{4.935}{0.286s+1}e^{-0.312s}$	$\frac{-2.187 \times 10^{-6}}{0.171s+1} e^{-0.312s}$	$\frac{-1.289 \times 10^{-3}}{0.417s+1} e^{-0.286s}$	
S	PO ₄ R4	$\frac{-0.266}{1.028s}e^{-0.312s}$	$\frac{-2.231 \times 10^{-5}}{1.091s+1} e^{-0.202s}$	$\frac{1.022 \times 10^{-4}}{0.668s + 1} e^{-0.312s}$	
S	_{PO4} R7	$\frac{-0.992}{0.748s+1}e^{-0.036s}$	$\frac{-2.404 \times 10^{-6}}{0.864s+1} e^{-0.312s}$	$\frac{1.577 \times 10^{-4}}{0.958s + 1} e^{-0.307s}$	
S	_{NO3} R4	$\frac{-0.783}{0.486s+1}e^{-0.069s}$	$\frac{-8.203 \times 10^{-5}}{0.588s+1} e^{-0.307s}$	$\frac{-5.693 \times 10^{-5}}{0.161s+1} e^{-0.312s}$	
S	_{NO3} R7	$\frac{-1.010}{0.447s+1}e^{-0.295s}$	$\frac{3.24\times10^{-6}}{0.539s+1}e^{-0.295s}$	$\frac{-1.357 \times 10^{-4}}{0.206s+1} e^{-0.307s}$	
S	_{NH4} R7	$\frac{-1.010}{0.447s+1}e^{-0.295s}$	$\frac{1.235\times10^{-6}}{8.210s+1}e^{-0.239s}$	$\frac{-1.072 \times 10^{-6}}{0.840s+1} e^{-0.291s}$	
				Computers and Chemical Engineering 53 (2013) 164-177.	_
COP DOTTON) INTERNAL RECYCLE	G		Contents lists available at SciVerse ScienceDirect	Comp A Ob Engin
- *		2 9 9 9	ELSEVIER	journal homepage: www.elsevier.com/locate/compchemeng	
Restort 1 Restort 750 m ³ Restort 750 m	Reason 1333 m ³ Arr Arr	Restir 7 1333 m ³	Development and e strategies for optin and phosphorus	economic assessment of different WWTP control nal simultaneous removal of carbon, nitrogen	۲
QLXT EXTERNAL BECYCLE		Q (George Simion Ostace ⁴ , Vasile Mircea Cristea ⁴ , F	Juan Antonio Baeza ^{b.} *, Javier Guerrero ^b , Albert Guisasola ^b , aul Şerban Agachi [#] , Javier Lafuente ^b	

Application of Non-Square Relative Gain Array (NSRGA) to WWTP with EBPR

Control Structures

		controller	KC	TI [days]	Td
Manipulated	Controlled				
variable	variable				
QCOD	SPO4 R2	PID	0.4148	0.4432	0.1
QREXT	SPO4 R2	PI	-1900.3	0.56	-
Q _{RINT}	S _{NO3} R4	PI	34,635	0.74	-
Q_W	X _{TSS} R7	PI	-4.9246	17	-
kLa R5	S02 R5	PI	100	0.01	-
kLa Ro	502 R0	PI	100	0.01	-
variables future co • MPC Ma	s, over a future fin introl moves. itlab Toolbox was	ite time horizon, a used for defining t	nd for the comput	ation of the se	quence

Application of Non-Square Relative Gain Array (NSRGA) to WWTP with EBPR

 Table 7

 Control loops and optimal setpoints of the implemented control strategies.

	Controlled parameter	Controller algorithm	Manipulated variable	Manipulated variable constrains	Optimal setpoint [mg/L]
Control loops for CS1	S_{O_2} in R5, R6, R7 S_{NO_3} in R4 S_{PO_4} in R2	PI PI PID	kLa in R5, R6, R7 Q _{RINT} COD addition	$\begin{array}{c} 0-160d^{-1} \\ 0-92,230m^3/d \\ 0-5m^3d^{-1} \end{array}$	[1.11, 1.45, 0.27] 1.98 27.00
Control loops for CS2	S_{O_2} in R5, R6, R7 S_{NO_3} in R4 S_{PO_4} in R2	PI PI PI	k _L a in R5, R6, R7 Q _{RINT} Q _{REXT}	$0-160 d^{-1}$ $0-92,230 m^3/d$ $9223-27669 m^3/d$	[1.00, 1.00, 0.25] 2.00 27.00
Control loops for CS3	S_{NO_3} in R7 S_{NO_3} in R4 S_{PO_4} in R2	Supervisory MPC Slave PI PI PID	S_{O_2} SP in R5, R6, R7 $k_L a$ in R5, R6, R7 Q_{BNT} COD addition	1–2 mg/L R5 and R6 0.25–2 mg/L R7 0–160 d ^{–1} 0–92,230 m ³ /d 0–5 m ³ /d	7.00 Imposed by MPC 2.00 27.00
Control loops for CS4	S _{NH4} in R7 S _{NO3} in R4 S _{PO4} in R2	Supervisory MPC Slave PI PI PID	S_{O_2} SP in R5, R6, R7 k_{La} in R5, R6, R7 Q_{SINT} COD addition	1–2 mg/L R5 and R6 0.25–2 mg/L R7 0–160 d ^{–1} 0–92,230 m ³ /d 0–5 m ³ d ^{–1}	1.50 Imposed by MPC 1.92 27.00
Common control loops	TSS in R7	PI	Q_W	300-450 m ³ /d	3850.00
NILLENT Son all Son all Son all Son all Son all Son all Son all Son all Son all Son all Son all Son all Son all Son al	CO HERRIT MIC TO HERRIT TO MIC TO HERRIT HERRIT HERIT HERRI	INTERNAL RECYCLE	(1) (5) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	SLUDGE DISPOSAL (J.A. Bae:	za)

Application of Non-Square Relative Gain Array (NSRGA) to WWTP with EBPR

Control Structures

Table 10 Operational c	costs for the contro	l strategies (S	1)–(S4), refere	ence operation	n (RO) and the	e optimized re	eference opera	ation (RO+) fo	or all influent	files.	
Inf	Control strategy	AE [€/d]	PE [€/d]	EC [€/d]	SP [€/d]	SNH [€/d]	P _{tot} [€/d]	N _{tot} [€/d]	EF [€/d]	OC [€/d]	OC+dTCC [€/d]
	RO	360	39	0	490	169	683	638	1489	2378	2378
	RO+	382	51	181	502	181	432	483	1096	2212	2212
Dev	CS1	349	49	171	522	143	298	512	953	2044	2093
Diy	CS2	329	43	0	507	165	464	586	1215	2094	2143
	CS3	348	48	169	520	141	310	520	971	2057	2115
	CS4	350	47	181	522	77	303	512	891	1992	2050
	RO	360	39	0	460	385	1019	868	2272	3131	3131
	RO+	382	51	181	484	376	722	666	1764	2861	2861
	CS1	357	52	400	510	378	506	645	1529	2848	2897
Rain	CS2	318	44	0	458	718	835	935	2488	3309	3358
	CS3	381	51	409	508	199	523	650	1371	2720	2778
	CS4	374	50	419	510	162	518	644	1324	2677	2735
	RO	360	39	0	499	448	846	887	2180	3078	3078
	RO+	382	51	181	509	425	592	676	1693	2816	2816
	CS1	361	49	232	527	315	466	705	1486	2655	2704
Storm	CS2	336	42	0	524	358	885	873	2116	3018	3067
	CS3	362	48	232	526	292	474	710	1475	2644	2702
	CS4	373	46	255	528	131	484	704	1318	2520	2578

Conclusions of the NSRGA and MPC study

- Four new control approaches for a WWTP with C/N/P removal, with control loops for improving P-removal in addition to the common C/N loops. All the set-points were optimized to ensure optimal performance → the reported results show the highest feasible performance of these control structures with fixed optimized set-points.
- Comparison with all weather influent files with reference operation (open loop except for TSS control) and with optimized reference operation. These results proved that:

(i) Operational costs and effluent quality of the WWTP can be greatly improved using model based optimization of the reference operation. Optimized reference operation improved effluent quality and operational costs by 7%-9%.

(ii) Automatic control of the WWTP can greatly improve the operational costs of the plant, maintain low pollutant effluent concentrations and achieve a more stable performance.

(iii) The Q_{COD} - PO4 R2 control loop (controlled external carbon addition in the first anaerobic reactor) provides a stable EBPR process and produces a better effluent quality.

(iv) Using the external recycle flow as manipulated variable to control PO4 at the end of the anaerobic zone proved to be a good approach only under dry weather conditions. The Q_{REXT} - PO4 R2 control loop did not assure a stable performance under rain and storm conditions.

(v) CS4 was the most efficient in all working conditions, leading to an operational cost reduction of 120,000 D /year for dry weather conditions. CS3 proved to be the second best due to its good performance during rain and storm events.

Biological nutrient removal: mathematical modelling as a good strate