CORSO DI LAUREA MAGISTRALE IN SCIENZE AMBIENTALI

Insegnamenti		
I	Sedimentologia con Elementi di	X
	Sedimentologia Marina	
I	Aspetti chimico-fisici nella	X
	decontaminazione ambientale C.I.	
I	Chimica dell'Ambiente con	X
	Laboratorio C.I.	
I	Georisorse Ambientali	X
I	Metodi e Modelli Matematici per le	X
	Applicazioni	
I	Fisica dell'Ambiente	X
I	Chimica delle Sostanze Organiche	
	Naturali	X
Materia		X
Opzionale	Idrogeochimica	
Materia	Processi Geochimici in Ecosistemi	Non
Opzionale	Terrestri	disponibile

FACOLTÀ	Scienze MM. FF. NN.
ANNO ACCADEMICO	20010/11
CORSO DI LAUREA MAGISTRALE	Scienze Ambientali
INSEGNAMENTO	Sedimentologia con elementi di
	Sedimentologia Marina
TIPO DI ATTIVITÀ	Attività formative caratterizzanti
AMBITO DISCIPLINARE	Discipline di scienze della Terra
CODICE INSEGNAMENTO	15379
ARTICOLAZIONE IN MODULI	NO
SETTORI SCIENTIFICO DISCIPLINARI	GEO/02
DOCENTE RESPONSABILE	Benedetto Abate
	Professore Ordinario
	Università degli Studi di Palermo
CFU	6(5+1)
NUMERO DI ORE RISERVATE ALLO	98
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	52
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Nessuna
ANNO DI CORSO	primo
SEDE DI SVOLGIMENTO DELLE	Aula B, via Archirafi, 26
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, Esercitazioni in aula,
MODALITÀ DI FREQUENZA	Facoltativa per le lezioni frontali, Obbligatoria
	per le esercitazioni
METODI DI VALUTAZIONE	Prova orale e valutazione elaborati preparati
	relativi alle esperienze di laboratorio ed al
	laboratorio sul campo.
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Primo periodo
CALENDARIO DELLE ATTIVITÀ	Lun., Mart.e Merc. 12.00-13.30;
DIDATTICHE	Giov. e Ven. 12.00-14.00
	2.0.1.2.1.2.00 1.1.00
ORARIO DI RICEVIMENTO DEGLI	Martedì e giovedì ore 09.00-10.00
STUDENTI	
	I

Conoscenza e capacità di comprensione

Lo studente deve conoscere i concetti fondamentali della Sedimentologia. Attraverso

l'inquadramento dei principali ambienti deposizionali marini e continentali, i principi generali che regolano il trasporto, la sedimentazione, e la litificazione.

L'insegnamento di Sedimentologia si propone di fornire gli strumenti per affrontare lo studio delle rocce in ragione dei parametri di granulometria, porosità e tipo di aggregazione delle particelle e dei cementi anche in considerazione delle applicazioni di geologia ambientale, geochimica ambientale e idrogeologia relativamente all'interazione tra rocce e fluidi circolanti.

Capacità di applicare conoscenza e comprensione

Questo richiede la capacità di integrare indagini sul terreno e in laboratorio con la teoria, in una progressione che va dall'osservazione, all'identificazione, alla sintesi ed alla costruzione di modelli. Al termine del corso, lo studente è in grado di:

- riconoscere i processi evolutivi connessi con la deposizione dei sedimenti, la loro trasformazione in rocce, gli ambienti deposizionali.

Autonomia di giudizio

Lo studente deve possedere abilità nell'interpretare e valutare i dati relativi ai processi sedimentologici che regolano la formazione delle rocce sedimentarie; e deve acquisire competenze per la progettazione di studi di analisi sedimentologica e di facies principalmente in rocce terrigene e carbonatiche.

Abilità comunicative

Lo studente deve saper descrivere in termini chiari e rigorosi gli argomenti acquisiti durante il corso nell'ambito delle attività e dei rapporti professionali. La verifica del raggiungimento di dette capacità avviene attraverso la prova di esame in cui è anche valutata l'acquisizione di un rigoroso linguaggio scientifico nell'esposizione

Capacità d'apprendimento

Lo studente deve essere capace di aggiornare e adattare autonomamente a livello di conoscenze maturate i concetti di sedimentologia acquisiti nel corso e saper condurre autonomamente analisi sedimentologiche in laboratorio.

OBIETTIVI FORMATIVI DEL MODULO

Fornire le nozioni di sedimentologia, che sono alla base per lo studio approfondito delle rocce sedimentarie. Lo studente deve acquisire le competenze per condurre analisi sedimentologiche di rocce in sezioni sottili e in lavati di rocce argillose; riconoscere le facies sedimentarie. Il corso si propone di fornire le basi culturali necessarie ad affrontare lo studio analitico delle rocce sedimentarie anche in vista di ricadute legate alla circolazione dei fluidi nelle rocce all'accumulo di inquinanti legati alle attività antropiche.

Riportati nel Regolamento Didattico del Corso di Studio

ORE FRONTALI	LEZIONI FRONTALI
12	SEDIMENTI E ROCCE SEDIMENTARIE Depositi Terrigeni. Origine dei granuli terrigeni. Weathering, ambienti e processi del weathering. Proprietà mineralogiche dei granuli e identificazione aree di provenienza. Proprietà tessiturale dei granuli terrigeni. Classificazione delle Rocce Terrigene. Depositi carbonatici. Infrastrutture dei sedimenti carbonatici, depositi attuali, ambienti profondi. Proprietà chimiche e mineralogiche dei granuli carbonatici. Proprietà tessiturali e tipi di granuli carbonatici. Matrice e cemento. Strutture biocostruite. Classificazione delle rocce carbonatiche. Depositi evaporitici. Origine dei granuli, proprietà chimicomineralogiche, caratteri morfologici dei cristalli. Classificazione delle rocce evaporitiche Altri depositi. Depositi Silicei. Depositi Fosfatici. Depositi Organici. Depositi Residuali Proprietà dei granuli. Distribuzione granulometrica, cenni sui parametri statistici, parametri morfologici, packing.
8	MECCANISMI DI TRASPORTO E MODALITÀ DI SEDIMENTAZIONE Flusso dei fluidi. Proprietà fisiche dei fluidi, visualizzazione dei flussi, forze di attrito, parametri numerici Modalità di trasporto dei granuli. Granuli in flussi stazionari, legge di Stoke e formula dell'impatto. Trasporto dei sedimenti, meccanismi del trasporto. Strutture sedimentarie e modalità di sedimentazione. Strutture formate da flussi unidirezionali. Strutture formate da onde. Strutture formate da flussi d'aria. Strutture biogene. Strutture da deformazione e da erosione. Flussi gravitativi. Tipi di flussi e relativi prodotti deposizionali.

10	ANALISI DELLE FACIES E AMBIENTI DI SEDIMENTAZIONE Facies. Concetto di facies e variazioni di facies Trasgressioni e regressioni Eustatismo Ambienti di sedimentazione; continentali, marini e di transizione. Sistema sedimentario Fluviale. Sistema Eolico. Sistema lacustre
10	SEDIMENTOLOGIA MARINA E REGIMI DEI LITORALI Modificazione della linea di costa, profilo di una spiaggia, deriva litorale, onde e loro classificazione
	ESERCITAZIONI
4	Riconoscimento granuli sedimentari e classificazione delle rocce sedimentarie
4	Tecniche di misure dirette di granulometrica e altri parametri tessiturali
4	Riconoscimento su campo di strutture sedimentarie, di facies e relativi ambienti di sedimentazione.
TESTI	Sedimentologia vol I, II e III, Ricci – Lucchi, Clueb
CONSIGLIATI	 - F. Ricci Lucchi (1992). Sedimentografia. Atlante fotografici delle strutture e dei sedimenti. (250 pp.) Zanichelli, Bologna. - A. Bosellini, E.Mutti, F.Ricci Lucchi (1989). Rocce e successioni sedimentarie. (395 pp.) Utet.

FACOLTÀ	Scienze MM. FF. NN.
ANNO ACCADEMICO	2010/11
LAUREA MAGISTRALE	Scienze Ambientali
INSEGNAMENTO	Aspetti chimico-fisici nella decontaminazione
	ambientale C.I.
TIPO DI ATTIVITÀ	Caratterizzante e Affine
AMBITO DISCIPLINARE	Discipline Chimiche
CODICE INSEGNAMENTO	15377
ARTICOLAZIONE IN MODULI	SI
NUMERO MODULI	2
SETTORI SCIENTIFICO DISCIPLINARI	CHIM/02
DOCENTE RESPONSABILE	Stefana Milioto
(MODULO 1)	Professore Ordinario
	Università degli Studi di Palermo
DOCENTE COINVOLTO	Stefana Milioto
(MODULO 2)	Professore Ordinario
	Università degli Studi di Palermo
CFU	9
NUMERO DI ORE RISERVATE ALLO	141
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	84
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Nessuna
ANNO DI CORSO	Primo
SEDE DI SVOLGIMENTO DELLE	Aula B, Via Archirafi 20, Palermo
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali
	Esercitazioni in laboratorio
MODALITÀ DI EDEGLIENZA	Obbligatoria
MODALITÀ DI FREQUENZA METODI DI VALUTAZIONE	Obbligatoria Prova Orale
METODI DI VALUTAZIONE	Prova Orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Secondo semestre
CALENDARIO DELLE ATTIVITÀ	Dal lunedì al Venerdi dalle 10.00 alle 12.00
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Da concordare con gli studenti
STUDENTI	(Stefana.milioto@unipa.it)

Conoscenza e capacità di comprensione

Lo studente deve conoscere i concetti fondamentali della chimica fisica applicata alla problematica del risanamento di suoli e bacini acquiferi contaminati da fasi liquide non acquose. A tale fine, deve conoscere il comportamento alle interfasi (liquido/aria, liquido/liquido e liquido/solido), quello reologico e la termodinamica delle soluzioni flushing adoperate nelle tecnologie di remediation trattate. Attraverso tali conoscenze potrà migliorare le sue conoscenze sul metodo scientifico di indagine e sarà capace di comprendere le problematiche ambientali in cui lo studente potrebbe essere coinvolto.

Capacità di applicare conoscenza e comprensione

Lo studente deve conoscere i concetti, le tecniche e metodologie chimico-fisiche per descrivere e comprendere a livello molecolare il processo di contaminazione di matrici solide e liquide e proporre soluzioni al problema.

Autonomia di giudizio

Lo studente deve possedere abilità nell'interpretare e valutare i dati relativi alle tematiche di inquinamento ambientale studiate esprimendo capacità autonoma di giudizio nel valutare il problema.

Abilità comunicative

Lo studente deve saper descrivere in termini chiari e rigorosi gli argomenti acquisiti durante il corso nell'ambito delle attività e dei rapporti professionali. La verifica del raggiungimento di dette capacità avviene attraverso la prova orale di esame in cui è anche valutata l'abilità, la correttezza e il rigore nell'esposizione.

Capacità d'apprendimento

Lo studente deve essere capace di aggiornare e adattare autonomamente a livello di conoscenze superiori i concetti chimico-fisici acquisiti nel corso.

OBIETTIVI FORMATIVI DEL CORSO

L'obiettivo del corso è quello di fornire concetti di chimica fisica che sono alla base della comprensione delle problematiche di inquinamento dell'ambiente con particolare riferimento alla contaminazione del suolo e di bacini acquiferi da parte di sostanze organiche.

MODULO 1	Aspetti chimico-fisici nella decontaminazione ambientale	
ORE FRONTALI	LEZIONI FRONTALI	
1	Introduzione al corso	
9	Tecnologie di remediation: Surfactant Enhanced aquifer Remediation e	
	Complex Sugar Flushing	
8	Viscosità. Equazione di Poiseuille. Metodi sperimentali.	
12	Definizione termodinamica della tensione superficiale. Isoterma di	
	adsorbimento. Equazione di La Place.	
8	Termodinamica di micellizzazione e di solubilizzazione in micelle.	
10	Interfase solido/liquido. Bagnabilità e angolo di contatto.	
MODULO 2	Laboratorio di aspetti chimico-fisici nella decontaminazione ambientale	
ORE DI	ESERCITAZIONI	
ESERCITAZIONI		
	Determinazione della costante di ripartizione di un contaminante tra la fase	
	acquosa e la fase aggregata di un tensioattivo a 25 °C	
	Determinazione del coefficiente di viscosità di soluzioni acquose di polimeri	
	in funzione della concentrazione.	
	Un esperimento <i>flushing</i> in scala di laboratorio mediante Columns Tests e	
	usando il metodo spettrofotometrico.	
	Determinazione della tensione superficiale di liquidi.	

TESTI	Principles of Colloid and Surface Chemistry, P. C. Hiemenz, Marcel Dekker,
CONSIGLIATI	1978.
	Surfactants and Interfacial Phenomena, M. J. Rosen Ed., Wiley-Interscience,
	1978.
	C. Jolicoeur, Thermodynamic flow methods in biochemistry: calorimetry,
	densimetry and dilatometry.

OBIETTIVI FORMATIVI DEL MODULO 1

Fornire concetti di chimica fisica delle interfasi che sono alla base della comprensione delle problematiche di inquinamento ambientale.

OBIETTIVI FORMATIVI DEL MODULO 2

Applicare le conoscenze acquisite nel modulo 1 a esperimenti in laboratorio.

FACOLTÀ	Scienze MM.FF.NN
ANNO ACCADEMICO	2010-2011
CORSO DI LAUREA MAGISTRALE	Scienze Ambientali
INSEGNAMENTO	Chimica dell'Ambiente con Laboratorio C.I.
TIPO DI ATTIVITÀ	Affine ed integrative
AMBITO DISCIPLINARE	-
CODICE INSEGNAMENTO	15376
ARTICOLAZIONE IN MODULI	SI
NUMERO MODULI	2
SETTORI SCIENTIFICO DISCIPLINARI	CHIM/12
DOCENTE RESPONSABILE	Gianguzza Antonio
(MODULO 1 Chimica dell'Ambiente)	Professore Ordinario
	Università degli Studi di Palermo
DOCENTE COINVOLTO	Daniela Piazzese
(MODULO 2 Laboratorio di Chimica	Ricercatore
dell'Ambiente)	Università degli Studi di Palermo
CFU	9
NUMERO DI ORE RISERVATE ALLO	141
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	84
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Nessuna,
ANNO DI CORSO	primo
SEDE DI SVOLGIMENTO DELLE	Aula del Dipartimento di Chimica Inorganica ed
LEZIONI	Analitica "Stanislao Cannizzaro"
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, Esercitazioni in laboratorio,
MODALITÀ DI FREQUENZA	Obbligatoria
METODI DI VALUTAZIONE	Presentazione di uno studio scientifico
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Primo semestre
CALENDARIO DELLE ATTIVITÀ	Lunedì al Venerdì dalle 8.00 alle 9.30
DIDATTICHE	Martedì e Giovedì dalle 15.00 alle 19.00
ORARIO DI RICEVIMENTO DEGLI	venerdì dalle 10.00 -12.00
STUDENTI	

Conoscenza e capacità di comprensione

Fornire conoscenza della composizione dei sistemi naturali, delle caratteristiche chimiche e della reattività nei comporti ambientali.

Fornire conoscenza dei processi chimici nei sistemi ambientali attraverso lo studio degli equilibri chimici che si instaurano in essi, con particolare attenzione alle interazioni tra i componenti chimici. Lo studio delle interazioni chimiche è alla base delle problematiche di impatto ambientale sui sistemi naturali.

Capacità di applicare conoscenza e comprensione

Capacità di definire le caratteristiche chimiche principali di un ecosistema naturale in termini di composizione e reattività e di individuare i principali processi chimici tra i componenti naturali e non dei sistemi naturali; capacità di elaborare uno studio di speciazione chimica.

Autonomia di giudizio

Essere in grado di individuare interazioni tra i differenti comparti ambientali, facendo uso dei cicli biogeochimici. Essere in grado di individuare i componenti antropogenici, con particolare riferimento al concetto di inquinamento. Essere in grado di valutare inoltre i risultati espressi nello studio di speciazione e di metterlo in relazione alle ricadute ambientali sia sul sistema stesso che sugli organismi animali e vegetali.

Abilità comunicative

Essere in grado di esporre i concetti di base della chimica ambientale, integrandoli con il concetto di ciclo naturale (o biogeochimico) e di inquinamento ambientale.

Essere in grado di comunicare inoltre i risultati di uno studio di speciazione e di esporre i risultati dando particolare risalto ai possibili interventi ambientali.

Capacità d'apprendimento

Essere in grado di approfondire gli argomenti tramite articoli scientifici specifici della materia e di seguire seminari ed approfondimenti nell'ambito della speciazione chimica.

OBIETTIVI FORMATIVI DEL MODULO

Il modulo si propone come obiettivo iniziale di fornire i concetti di base per la definizione della composizione e delle caratteristiche chimiche degli ecosistemi naturali (acqua, aria, suolo). I concetti saranno rielaborati nell'ottica dei cicli biogeochimici, al fine di definire i processi di inquinamento ambientale. Breve cenno riguarda la reattività di sostanze antropogeniche che alterano la reattività naturale negli ecosistemi (inquinamento ambientale). La seconda parte del modulo ha come obiettivo lo studio dei processi chimici nei sistemi ambientali attraverso lo studio degli equilibri chimici che in esso si instaurano. La metodologia di studio frontale prevede l'uso di modelli chimici, al fine di potere definire la "speciazione chimica" dei macrocomponenti dei sistemi naturali e delle più comuni classi di leganti inorganici (fosfati, sali di ammonio, ioni metallici ed organometallici) e organici ad alto e basso peso molecolare (carbossilati, ammine, amminoacidi, composti fenolici, acidi umici e fulvici....) naturalmente presenti. I concetti teorici saranno approfonditi attraverso le esercitazioni che hanno come finalità la definizione della speciazione dei componenti chimici di rilevanza ambientale scelti per l'approfondimento.

MODULO 1	Chimica dell'Ambiente	
ORE FRONTALI	LEZIONI FRONTALI	
1	Obiettivi della disciplina e sua suddivisione.	
6	Composizione dei sistemi naturali, caratteristiche chimiche e reattività	
	Le acque naturali	
	Caratteristiche chimiche e composizione	
	Principali reazioni chimiche	
	Il suolo	
	Caratteristiche chimiche e composizione	
	Principali reazioni chimiche	
10	Inquinamento ambientale	
	Cause ed effetti negli ecosistemi	
	Classificazione degli inquinanti principali	
	Inquinanti inorganici: metalli ed organometalli	
	Reattività, biodisponibilità e trasporto ambientale	
	Cicli ambientali di Cd, Hg, Pb	
12	Equilibrio chimico nei comparti naturali	
	Definizione di equilibrio chimico	
	Studio dell'equilibrio chimico	
	- definizione dei parametri termodinamici dell'equilibrio	
	- reazioni di complessazione metallo legante	
	- metodiche sperimentali per lo studio di equilibri chimici	
	Principali classi di leganti naturali nei sistemi ambientali e loro reattività:	
	- leganti carbossilici,	
	- leganti fosfatici,	
	- polielettroliti: sostanze umiche, chitosano, pectine, alginati	
14	La speciazione chimica	
	Concetto e definizione di Speciazione Chimica	
	Modelli Chimici per lo studio della Speciazione	
	Influenza della speciazione chimica sulla tossicità, disponibilità e trasporto negli ecosistemi	
	naturali	
	Speciazione delle differenti classi di leganti naturali	
	Speciazione dei metalli e degli organometalli nei sistemi ambientali	
6	Capacità sequestrante delle principali classi di leganti naturali nei confronti di ioni metallici	
	ed organometallici	
TESTI	J. Buffle. Complexation Reactions in Aquatic Systems: an analytical approach. Ellis	
CONSIGLIATI	or 2 differ comprehension reductions in require of sterior an analytical approach. Diffe	

Horwood ltd.
Metal Speciation and Bioavailability in aquatic Systems. A. Tessier and DR. Turner (eds). Iupac Series
S.E. Manahan – Chimica dell'Ambiente – Piccin
Materiale di consultazione sarà fornito durante il corso

OBIETTIVI FORMATIVI DEL MODULO

Il modulo si propone come obiettivo di approfondire attraverso le esercitazioni di laboratorio i concetti teorici sviluppati nel modulo 1 al fine di definire la speciazione di classi di sostanze di rilevanza ambientale

MODULO 2	Laboratorio di Chimica dell'Ambiente	
ORE FRONTALI	LEZIONI FRONTALI	
6	Studio della capacità sequestrante dell' acido malonico e lo ione cadmio attraverso la tecnica potenziometrica	
	ESERCITAZIONI	
10	Studio della capacità sequestrante dell' acido malonico e lo ione cadmio attraverso la tecnica potenziometrica	
4	Elaborazione dati e presentazione risultati	
TESTI CONSIGLIATI	Skoog Leary- Chimica Analitica Strumentale –Edises editore	

FACOLTÀ	Scienze MM.FF.NN.
ANNO ACCADEMICO	2010/2011
CORSO DI LAUREA MAGISTRALE	Scienze Ambientali
INSEGNAMENTO	Georisorse Ambientali
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Discipline di scienze della Terra
CODICE INSEGNAMENTO	08084
ARTICOLAZIONE IN MODULI	NO
SETTORI SCIENTIFICO DISCIPLINARI	GEO/08
DOCENTE RESPONSABILE	Bellanca Adriana
(MODULO 1)	Professore Ordinario
	Università degli Studi di Palermo
CFU	6
NUMERO DI ORE RISERVATE ALLO	98
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	52
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Nessuna
ANNO DI CORSO	1
SEDE DI SVOLGIMENTO DELLE	Aula B
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, Esercitazioni in aula, Visite in
	campo
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova orale finale, Test intermedio con
	elaborazione di una relazione sintetica
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	21/03/11 – 17/06/11
CALENDARIO DELLE ATTIVITÀ	Giorni e orario delle lezioni: da lunedì a venerdì
DIDATTICHE	12.00 – 13.30
ORARIO DI RICEVIMENTO DEGLI	Giorni e orari di ricevimento
STUDENTI	Martedì e Giovedì ore 9.00 – 11.00

Conoscenza e capacità di comprensione

Il corso tende a sviluppare negli studenti la conoscenza del territorio in vista di una valorizzazione delle georisorse ambientali in esso ricadenti e della loro preservazione in relazione sia ai processi naturali che all'impatto antropico.

Capacità di applicare conoscenza e comprensione

Lo studente acquisirà specifiche abilità nella raccolta ed interpretazione di dati geochimici e petrografici oltre che capacità di progettazione autonoma di interventi volti alla salvaguardia, protezione e valorizzazione delle georisorse ambientali.

Autonomia di giudizio

Lo studente svilupperà una coscienza critica sulle problematiche che riguardano l'impatto di eventi naturali ed attività antropiche sulle georisorse ambientali e sarà in grado di valutare le implicazioni e i risultati degli interventi che progetta ed esegue.

Abilità comunicative

Lo studente sarà in grado di dialogare e relazionarsi in una varietà di contesti professionali (pubblico, comunità scientifica, committenze tecniche), di utilizzare strumenti multimediali per raccogliere e divulgare dati, informazioni e risultati degli studi progettati.

Capacità d'apprendimento

Lo studente avrà acquisito una capacità critica che gli permetterà di aumentare le sue conoscenze aggiornandosi costantemente e mantenendosi informato sui nuovi sviluppi e metodi scientifici nell'ambito delle Scienze Ambientali.

OBIETTIVI FORMATIVI DEL MODULO

La conoscenza del territorio viene considerato un punto di partenza per studenti che si formano alla gestione ambientale. Il corso intende offrire i metodi d'indagine geochimica e petrografica sulle georisorse (risorse del sottosuolo, cave attive e dismesse, sistemi deposizionali attivi, suoli) in vista di una loro valorizzazione e preservazione in relazione sia ai processi naturali che all'impatto antropico. Il corso si integra con gli insegnamenti volti alla programmazione di una corretta gestione delle risorse nell'ottica della tutela ambientale e in relazione alle specifiche esigenze del territorio.

MODULO	DENOMINAZIONE DEL MODULO	
ORE FRONTALI	LEZIONI FRONTALI	
1	Obiettivi del corso e sua suddivisione. Implicazioni con altre discipline e con le	
	problematiche ambientali	
16	Conoscere la risorsa suolo per preservarne la qualità. Il suolo. Pricipali processi pedogenetici.	
	Processi pedogenetici estremi. Ruolo della frazione argillosa. Argille e minerali argillosi.	
	Suoli deflocculati. Previsione del comportamento del suolo in relazione alla composizione mineralogica. Implicazioni ambientali delle variazioni tessiturali in un corpo argilloso. I suoli	
	urbani. Strategie di campionamento.	
	Determinazione della composizione mineralogica di un suolo. Analisi in diffrattometria RX.	
	Cenni ai metodi di analisi mineralogica selettiva.	
	Composizione chimica globale. Componente geochimica litogenica ed antropogenica. Le	
	soluzioni del suolo e la sua qualità. Strategie di campionamento dei suoli. Mobilità degli	
	elementi nell'ambiente del suolo. Utilità dell'analisi del suolo attraverso estrazione	
3	sequenziale. Parametrizzazione del processo di weathering. Geochimica dei suoli urbani. Ambienti di confine: aspetti geochimici e mineralogici della sedimentazione in ambienti	
3	lacustri e lagunari.	
1	Metodi di datazione di sedimenti e suoli	
5	Bacini evaporitici attuali ed evaporiti messiniane come georisorse ambientali I minerali	
	evaporitici. Modalità di deposizione evaporitica. Speleotemi in un contesto di formazioni	
	gessose. La Formazione gessoso-solfifera. Dal Tripoli ai Trubi con cenni alle	
	mineralizzazioni a zolfo ed ai rosticci: genesi e caratteristiche petrografiche. Ricadute sul territorio della presenza degli affioramenti della gessoso-solfifera.	
10	I travertini pleistocenici ed i sistemi di deposizione attiva dei travertini. Speleotemi in	
10	contesti cartonatici. Genesi, strutture e tessiture. La geochimica isotopica e degli elementi per	
	la conoscenza e la protezione ambientale dei sistemi di deposizione attuale di travertini,	
	microbialiti, speleotemi, etc.: prevenzione dell'impatto antropico e preservazione. Criteri e	
	sistemi di monitoraggio in ambienti di grotta.	
4	Conoscere i rifiuti inerti in vista della stesura di progetti di recupero ambientale. Il Cemento	
	Portland: componenti primari e secondari. Calcestruzzi ed inerti. Ceramiche porose e non porose, rivestite e non: composizione chimica e mineralogica.	
	porose, rivestite e non: composizione chimica e mineralogica. Laboratorio	
12	Utilizzo delle principali metodologie finalizzate allo studio delle georisorse ambientali.	
12	- cample delle principui increderegie imanipatic uno studio delle georisorio uniorentini.	
TESTI	B. Velde ed Origin and mineralogy of clays. Springer.	
CONSIGLIATI	Viene fornito un supporto addizionale mediante appunti	

FACOLTÀ	Scienze MM. FF. NN.
ANNO ACCADEMICO	2010-2011
CORSO DI LAUREA MAGISTRALE	Scienze Ambientali
INSEGNAMENTO	Metodi e Modelli Matematici per le
	Applicazioni
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Discipline agrarie, tecniche e gestionali
CODICE INSEGNAMENTO	05044
ARTICOLAZIONE IN MODULI	NO
SETTORE SCIENTIFICO DISCIPLINARE	MAT/07
DOCENTE RESPONSABILE	Gaetana Gambino
	Ricercatore non confermato
	Università di Palermo
CFU	6
NUMERO DI ORE RISERVATE ALLO	102
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	48
ATTIVITÀ DIDATTICHE	
PROPEDEUTICITÀ	Nessuna
ANNO DI CORSO	Primo
SEDE DI SVOLGIMENTO DELLE	Aula B/C, Via Archirafi, 26
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	2° Semestre: 21 marzo – 29 aprile 2011
CALENDARIO DELLE ATTIVITÀ	Dal Lun. al Ven. 8:00-10:00
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Ogni Mercoledì dalle ore 11 alle 13
STUDENTI	

Conoscenza e capacità di comprensione: Conoscenza delle proprietà dei sistemi dinamici, discreti e continui, lineari e non lineari. Capacità di comprenderne le caratteristiche e le eventuali applicazioni.

Capacità di applicare conoscenza e comprensione Capacità di costruire un modello matematico che traduca un problema reale. Capacità di analizzarlo qualitativamente ed, ove possibile, determinarne soluzioni esplicite.

Autonomia di giudizio Capacità di valutare e comparare autonomamente le soluzioni di un problema di limitata complessità.

Abilità comunicative Capacità di esprimere chiaramente concetti tecnici Capacità d'apprendimento Saper integrare le conoscenze da varie fonti al fine di un approfondimento della conoscenza dei fenomeni presenti nei sistemi reali.

OBIETTIVI FORMATIVI DEL MODULO

Il corso ha carattere introduttivo all'applicazione dei modelli matematici ai sistemi ecologico/ambientali. Ci si propone, dunque, di fornire gli elementi di base per capire se e in che misura lo strumento modellistico può essere di aiuto nello studio di un particolare problema ambientale. Da un lato verranno introdotti e classificati, da un punto di vista puramente matematico, i sistemi dinamici. In particolare, verranno trattati i principali aspetti dell'analisi qualitativa e i

concetti di base di equilibrio e stabilità. Dall'altro gli studenti verranno guidati a "costruire" un modello matematico atto a tradurre un problema reale.

ORE FRONTALI	LEZIONI FRONTALI
2	Il concetto di sistema dinamico. Sistami dinamici discreti e continui. Esempi
2	Sequenze ricorsive. Il modello malthusiano di crescita di una popolazione
2	Forma chiusa di un sistema dinamico. Comportamento asintotico nel tempo
2	Punti di equilibrio di un sistema dinamico. Esempi
2	Un criterio analitico per lo studio della stabilità dei punti di equilibrio
2	Il metodo cobweb per lo studio della stabilità. Esempi
2	Popolazioni controllate mediante immissione/caccia
2	Sistemi ricorsivi lineari. Il polinomio caratteristico
2	La sequenza di Fibonacci
2	Un modello di semina annuale
2	Un modello per la produzione di globuli rossi
2	Modelli discreti multi-dimensionali: il modello ospite-parassita
2	Il modello discreto predatore-preda
2	Sistemi dinamici continui: esempi di sistemi dinamici lineari
2	Equazioni differenziali lineari a coefficienti costanti. Le soluzioni fondamentali e l'integrale
	generale.
3	Equazioni differenziali a variabili separabili. Esempi
3	Modelli continui non lineari: L'equazione logistica
2	Classificazione dei punti di equilibrio
4	Teorema di linearizzazione. Zerocline e isocline
3	I sistemi predatore-preda
3	Modelli di popolazioni in simbiosi e in competizione
TESTI	• D. Mooney, R. Swift, A Course in Mathematical Modeling, The Mathematical
CONSIGLIATI	Association of America , 1999.
	• L. Edelstein-Keshet, Mathematical Models in Biology , SIAM, 2005
	A. Gore, S. Paranjpe, A course in Mathematical and Statistical Ecology, Kluwer Academic Publishers, 2001

FACOLTÀ	Scienze MM. FF. NN.
ANNO ACCADEMICO	2010/2011
CORSO DI LAUREA MAGISTRALE	Scienze Ambientali
INSEGNAMENTO	Fisica dell'ambiente
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Discipline agrarie, tecniche e gestionali
CODICE INSEGNAMENTO	03271
ARTICOLAZIONE IN MODULI	NO
SETTORI SCIENTIFICO DISCIPLINARI	FIS/06
DOCENTE RESPONSABILE	Antonio Cimino
CFU	6
NUMERO DI ORE RISERVATE ALLO STUDIO PERSONALE	102
NUMERO DI ORE RISERVATE ALLE ATTIVITÀ DIDATTICHE ASSISTITE	48
PROPEDEUTICITÀ	Nessuna
ANNO DI CORSO	Primo
SEDE DI SVOLGIMENTO DELLE LEZIONI	Aula B -Via Archirafi 28
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, esercitazioni in laboratorio di informatica, visite a laboratori di Fisica Applicata
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova orale. Test a risposta multipla, presentazione di una tesina (opzionali)
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Primo periodo
CALENDARIO DELLE ATTIVITÀ DIDATTICHE	Lunedì, Martedì, Mercoledì, Giovedì, Venerdì 10.00 -12.00
ORARIO DI RICEVIMENTO DEGLI STUDENTI	Su appuntamento (339 2025569)

Conoscenza e capacità di comprensione

Acquisizione degli strumenti avanzati per la formazione e la memorizzazione relative a cartografie ambientali, comprensione dell'importanza della fisica per le scienze ambientali. Capacità di utilizzare i termini caratteristici proprie di questa disciplina specialistica.

Capacità di applicare conoscenza e comprensione

Capacità di intuire le possibili applicazioni della fisica dell'ambiente in base alle differenti esigenze. Analisi dei prodotti finali delle applicazioni della fisica dell'ambiente, attraverso elaborazioni in ambiente GIS, ai fini della classificazione di immagini *raster* ed il riconoscimento territoriale.

Autonomia di giudizio

Essere in grado in autonomia di valutare le implicazioni della fisica dell'ambiente per l'analisi degli ambienti naturali subaerei epigei ed ipogei, con particolare riguardo agli studi dei sistemi sotterranei complessi, nonché i risultati e le ricadute per la collettività.

Abilità comunicative

Capacità di esporre l'utilità delle applicazioni della fisica dell'ambiente anche ad un pubblico non esperto. Essere in grado di sostenerne l'importanza ed evidenziarne le ricadute ambientali anche nel settore della protezione civile.

Capacità d'apprendimento

Capacità di aggiornamento dei contenuti del corso con la consultazione dei siti web, incluse le pubblicazioni scientifiche proprie del settore della fisica dell'ambiente. Capacità di seguire, utilizzando le conoscenze acquisite nel corso, master di secondo livello, corsi d'approfondimento e seminari specialistici, in particolare nel settore del rischio cui sono sottoposte le risorse ambientali.

OBIETTIVI FORMATIVI DEL MODULO

- 1) *Obiettivo generale*: formazione di competenze nell'analisi e nel monitoraggio del territorio e dell'ambiente che vedono l'esplicita utilizzazione dei principi della Fisica di base ed applicata.
- 2) Obiettivi specifici: Riconsiderazione dei principali argomenti di Fisica che vedono una loro immediata ed evidente applicazione nello studio e nel monitoraggio delle risorse ambientali, anche quelle direttamente o indirettamente collegate alla tutela del patrimonio paesaggistico e culturale. Esame generale delle complesse interazioni tra sistemi fisici naturali e antropizzati e applicazioni allo studio del territorio ed all'ambiente terrestre e circumterrestre. Studio della diffusione e della propagazione degli inquinanti, idroveicolati e non, all'interno di ambienti antropizzati e naturali. Saranno attentamente valutati gli aspetti inerenti ai rischi derivanti da situazioni di degrado ambientale. Inserimento dei risultati applicativi in Sistemi Informativi Territoriali e loro utilizzazione nell'ambito della gestione e conservazione delle risorse ambientali e per una corretta pianificazione territoriale.

MODULO	FISICA DELL'AMBIENTE
ORE	LEZIONI FRONTALI
FRONTALI	
8	Fisica dell'ambiente subaereo epigeo (atmosfera, terre emerse, acque superficiali interne ed esterne): Remote Sensing o Telerilevamento. Generalità sui satelliti artificiali. Le onde elettromagnetiche e loro importanza nelle scienze ambientali. GPS e suoi cenni. Radiazioni emesse, riflesse e segnali radar. La risoluzione spaziale delle immagini digitali. Il formato digitale delle immagini, la multi-spettralità e la multi-temporalità. Le leggi di Plank, Stefan-Boltzmann e Wien. L'assorbimento atmosferico delle onde elettromagnetiche. Concetti di asse rendiometrico e spazio multispettrale. Le termografie all'infrarosso. Le firme spettrali.
8	L'energia incidente sulla Terra. Anisotropia della riflettività. L'exitanza e l'irradianza spettrali. La radianza. Gli effetti atmosferici e radiometrici sull'osservazione della radiazione elettromagnetica. L'effetto velo e la trasmittanza. Effetto diffusivo nell'atmosfera delle onde elettromagnetiche. La dipendenza dei parametri atmosferici e radiometrici dalla lunghezza d'onda: aspetti matematici.
8	Le onde radar nel Telerilevamento. Le informazioni di intensità (riflettività e contenuto energetico) e quantitative di fase (rotazione di fase del segnale ricevuto) con la generazione di DEM della superficie terrestre. La riflettività come funzione della scabrosità (back scattering) e del contrasto in costante dielettrica.

Il Telerilevamento in archeologia. Il riconoscimento dei siti archeologici dall'alto:
Gli effetti climatici ed antropici sulla visibilità dei siti archeologici, con particolare
riguardo al clima, all'agricoltura ed alla mobilità del suolo. Fotografia e sensori per il
riconoscimento dei siti archeologici, le bande dello spettro elettromagnetico adoperate
La classificazione di Crawford dei siti archeologici. Il contrasto delle immagini e i
modelli delle ombre. I siti nel suolo: rilievo del colore e dell'umidità. La mobilità, i
materiali trasportati, il clima e l'agricoltura, la neve e il ghiaccio.
Fisica applicata ai Beni Culturali. Tecniche fisiche per lo studio e la
caratterizzazione di beni culturali, archeologici e ambientali. Laboratori di Risonanza
Magnetica Nucleare, Tomografia Computerizzata, Termoluminescenza, Spettroscopia
di assorbimento atomico. Termocamera a raggi infrarossi (Proximal Sensing). In
dipendenza della disponibilità dei laboratori.
Fisica dell'ambiente subaereo ipogeo (strati superficiali e profondi del terreno):
studio dei corpi idrici sotterranei complessi (Idrogeologia, Idrogeofisica). Introduzione
dei contaminanti negli acquiferi: parametri fisici e caratteristiche idrodinamiche della
propagazione. Esercitazioni sull'uso di programmi GIS per l'elaborazione di
cartografie di rischio idrogeologico, immagini raster nelle applicazioni nelle scienze
ambientali. Fisica dell'ambiente subaereo ipogeo (strati superficiali e profondi del
terreno): studio dei sistemi geologici sotterranei (Geofisica del sottosuolo, Log). Log
di resistività, di potenziale spontaneo, elettromagnetici e radioattivi.

TESTI CONSIGLIATI

Dermanis & Biagi. - Telerilevamento. Informazione territoriale mediante immagini da satellite. Ambrosiana editrice, 2002.

Scollar I. - Archaeological Prospecting and Remote Sensing. Cambridge Univ. Press, 1990.

M. Civita. *Idrogeologia applicata e ambientale*. Casa Editrice Ambrosiana. C. W. Fetter. *Applied Hydrogeology*. Pearson Education International. Hoffmann-Wellenhof. *GPS: Theory and Practice*. Springer Verlag. Telford et al.. *Applied Geophysics*. Cambridge University Press. *Appunti, presentazioni power-point e dispense forniti dal docente*.

FACOLTÀ	Scienze MM.FF.NN.
ANNO ACCADEMICO	2010/2011
CORSO DI LAUREA MAGISTRALE	Scienze Ambientali
INSEGNAMENTO	Idrogeochimica
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Discipline di Scienze della Terra
CODICE INSEGNAMENTO	03784
ARTICOLAZIONE IN MODULI	No
NUMERO MODULI	-
SETTORI SCIENTIFICO DISCIPLINARI	GEO/08
DOCENTE RESPONSABILE	Paolo Censi
(MODULO 1)	Professore Associato
	Università di Palermo
CFU	6
NUMERO DI ORE RISERVATE ALLO	102
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	48
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	-
ANNO DI CORSO	Primo
SEDE	Aula dipartimento CFTA
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Primo semestre
CALENDARIO DELLE ATTIVITÀ	Martedì 8-10; Mercoledì 8-10, Venerdì 8-10
DIDATTICHE	D C D C
ORARIO DI RICEVIMENTO DEGLI	Prof. P. Censi
STUDENTI	Venerdì
	Ore 17-19

Conoscenza e capacità di comprensione

Acquisizione degli strumenti avanzati per la valutazione delle caratteristiche geochimiche di un corpo liquido naturale. Capacità di utilizzare il linguaggio specifico proprio di queste discipline specialistiche.

Capacità di applicare conoscenza e comprensione

Capacità di riconoscere, ed organizzare in autonomia, i caratteri geochimici di un'acqua naturale, continentale o marina.

Abilità comunicative

Capacità di esporre i risultati degli studi idrogeochimici anche ad un pubblico non esperto. Essere in grado di sostenere l'importanza ed evidenziare le ricadute ambientali di uno studio geochimico di un corpo idrico.

Capacità d'apprendimento

Capacità di aggiornamento con la consultazione delle pubblicazioni scientifiche proprie del settore dell'idrogeochimica.

OBIETTIVI FORMATIVI DEL CORSO

Apprendimento dei fondamenti: lo studio dell'acqua come solvente. L'alterazione dei minerali e la loro stabilità. Il processo di weathering e la mobilizzazione dei metalli. Cenni di chimica di coordinazione. Leganti e complessi. Diagrammi Eh-pH. Le acque marine. Distribuzione delle specie chimiche lungo la colonna d'acqua. L'interazione con la biosfera. La biodisponibilità degli elementi in soluzione e il loro ingresso nella catena trofica.

Geochimica dei lantanidi in fase acquosa e comportamento di tali elementi negli equilibri di fase. Effetto nefelauxetico e ripercussioni sulla distribuzione degli elementi del blocco f nel sistema acquoso.

	IDROGEOCHIMICA
ORE FRONTALI	LEZIONI FRONTALI
1	Obiettivi della disciplina e sua suddivisione.
2	Alterazione dei minerali
4	Chimica dei complessi di coordinazione, tipi di legame chimico
6	Leganti e complessi, ruolo di temperatura, pH, fO2, pCO2
5	Legge di Nerst e potenziali redox. Diagrammi Eh-pH
2	Speciazione in soluzione. Stabilità dei complessi
4	Speciazione superficiale. L'adsorbimento
4	Effetto della cinetica
6	L'ambiente marino
6	Comportamento degli elementi chimici in ambiente marino
4	La geochimica dei lantanidi in soluzione
4	Cenni di Biogeochimica in ambiente marino
TESTI	Huang, O'Melia and Morgan (1995) - AQUATIC CHEMISTRY. American Chemical
CONSIGLIATI	Society (Advance in Chemistry series 244).

FACOLTÀ	Scienze MM. FF. NN.
ANNO ACCADEMICO	2010/2011
CORSO DI LAUREA MAGISTRALE	Scienze Ambientali
INSEGNAMENTO	Chimica delle sostanze organiche naturali
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Discipline chimiche
CODICE INSEGNAMENTO	01854
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	-
SETTORI SCIENTIFICO DISCIPLINARI	CHIM/06
DOCENTE RESPONSABILE	Antonella Maggio
(MODULO 1)	Ricercatore
	Università di Palermo
CFU	6
NUMERO DI ORE RISERVATE ALLO	102
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	48
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Nessuna
ANNO DI CORSO	Primo
SEDE	Consultare il sito:
	http://www.scienze.unipa.it/analisigestioneamb/a
	nalisigestamb/
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Tre prove in itinere
	Esame orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Secondo semestre
CALENDARIO DELLE ATTIVITÀ	Consultare il sito:
DIDATTICHE	http://www.scienze.unipa.it/analisigestioneamb/an
	alisigestamb/
ORARIO DI RICEVIMENTO DEGLI	Lunedì, Venerdì
STUDENTI	Ore 9-11

Conoscenza e capacità di comprensione

Conoscenza delle tre principali vie metaboliche secondarie. Acquisizione e comprensione dei percorsi biogenetici che portano alla formazione dei metaboliti secondari.

Affrontare dal punto di vista biochimico la complessità dell'evoluzione degli ecosistemi,

Capacità di applicare conoscenza e comprensione

Analizzare la biodiversità a differenti livelli di organizzazione (da quella genetica a quella specifica ed ambientale).

Autonomia di giudizio

Saper valutare la complessità degli ecosistemi e adottare le strategie idonee al mantenimento della biodiversità.

Abilità comunicative

Usare il linguaggio specifico della disciplina in modo da poter interagire in modo attivo con

professionisti di altri ambiti disciplinari.

Capacità d'apprendimento

Capacità di comprensione dei meccanismi di reazione e loro applicazione nei processi biogenetici.

Riconoscimento delle principali classi di metaboliti secondari con lo scopo di saper riconoscere e valutare la biodiversità negli ecosistemi.

OBIETTIVI FORMATIVI DELCORSO

Obiettivo del corso è la conoscenza delle tre principali vie metaboliche secondarie, il legame con il metabolismo primario e il riconoscimento dei principali metaboliti secondari. Affrontare dal punto di vista biochimico la complessità dell'evoluzione degli ecosistemi. Analizzare la biodiversità a differenti livelli di organizzazione (da quella genetica a quella specifica ed ambientale).

CORSO	Chimica delle sostanze organiche naturali
ORE FRONTALI	LEZIONI FRONTALI
1	Introduzione e obiettivi del corso. Metabolismo primario e matabolismo secondario.
6	Mattoni biosintetici. Meccanismi generali delle reazioni metaboliche
5	Via Metabolica dell'acetato. Biogenesi degli acidi grassi. Biogenesi degli acidi grassi insaturi
	Acidi grassi polinsaturi. Acidi grassi ramificati. Polipropionati e antibiotici macrolidici. Acidi
	Grassi essenziali e biogenesi delle prostaglandine
3	Polichetidi. Meccanismi di ciclizzazione delle catene polichetidiche. Sintesi di metaboliti
	secondari aromatici
6	Via dell'acido mevalonico. Biogenesi delle unità isopenteniliche e meccanismo di
	dimerizzazione. Monoterpeni. Sesquiterpeni. Diterpeni. Triterpeni. Tetraterpeni. Terpeni
	superiori.
2	Steroli vegetali. Corticosteroidi e ormoni
6	Biogenesi di composti aromatici: via dell'acido shikimico. Biogenesi degli Acidi Benzoici.
	Biogenesi degli amminoacidi aromatici. Acido cinnammico e alcool cinnammilici.
3	Esempi di metaboliti secondari derivati da biogenesi mista: Flavoni, Stilbeni ed Antociani
4	Alcaloidi: struttura e classificazione – Alcaloidi derivanti dall'ornitina
4	Alcaloidi derivanti dalla lisina e dall'acido nicotinico
4	Alcaloidi derivanti dal triptofano e dalla tirosina
4	Alcaloidi non amminoacidici e alcaloidi purinici
TESTI	PAUL M. DEWICK – Chimica, Biosintesi e Bioattività delle Sostanze Naturali – PICCIN
CONSIGLIATI	Appunti di lezione