

Course Title: Real-Time: From theory to pratice using the Java Language.

Objective:

The proliferation of applications with time constraints has significantly increased the interest for real-time. The range of applications with safety critical constraint is large: avionic control systems, telecommunications, industrial automation and robotics. On the other hand, the compliance with temporal constraints has a direct impact on the performance of applications which are not critical in terms of safety.

Real-Time Java combines the ease of programming in the Java language with the performance required by applications that must conform to real-time constraints. Extensions to the Java language provide features for real-time environments the traditional Java runtime environment is lacking.

Outline:

The main objectives of the course are to introduce the basic concepts of real-time scheduling. The course will be divided in three chapters.

1) *Introduction*. We will provide an introduction to the real-time task models and uniprocessor scheduling algorithms. We will describe the periodic and aperiodic job activation models, the fixed and dynamic priority scheduling, the priority assignment rules and optimality.

2) Feasibility Analysis. We will present the cpu load conditions and the calculation of the worst case response time of a task in order to decide if a task is feasible or not (i.e if the task respects its temporal constraints in the worst case conditions).

3) Resource Sharing and Task Synchronization. We will describe the different problems associated with the synchronization of real-time tasks (unbounded priority inversion, interblocking, chain of blocking). We will describe two major algorithms: the Priority Inheritance Protocol (PIP) and the Priority Ceiling Emulation Protocol (PCE).

Exercises:

For each of the aforementioned chapters, the course will present the main classes described in the Real-Time Specification for Java (RTSJ). Exercises will be proposed to illustrate these different chapters using the LejosRT environment: a RT-JVM running on a Lego Mindstorms NXT Brick (<u>http://lejosRT.univ-mlv.fr</u>).