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Abstract.Multiple support excitations of elastic multi-span beams are studied. Based on the 
common set of equations of motion an efficient formulation is developed in order to reduce 
the degrees of freedom. The resulting equations are formally identical to those that are valid 
for structures under uniform support excitations. Stationary random multiple support 
excitation is studied by an approximate Pseudo Excitation Method calculating the power 
spectral density matrix of the structural response vector. 

1 INTRODUCTION 

Structures supported on several foundationssuch as bridges behave very complex when 
subjected to ground motions, e.g. earthquakes. Analysis of seismic response cannot be based 
on the single assumption that free-field ground motions are spatially uniform. Therefore 
common discretization procedures, originally derived for structures under uniform support 
excitations, must be extended accordingly resulting in a larger system of equations of motion, 
see e.g. [1] and [2]. 

The dynamic response of bridges subjected to deterministic multiple support excitation has 
been investigated by various researchers, [3], [4], [5]. Random vibrations of bridges have 
been analyzed generally by spectral analysis approach in the last two decades. In [6] the 
response of continuous two- and three-span beams to varying ground motions is evaluated 
and the validity of the commonly used assumption of equal support motion is examined. An 
extensive comparison of random vibration methods for multiple support seismic excitation 
analysis of long-span bridges can be found in [7]. 

In this paperanadvanced formulation for linear elastic multi-span beams under multiple 
support excitation is proposed in order to reduce the degrees of freedom in a mechanically 
consistent manner. The resulting differential equations are formally identical to those of 
structures under uniform support excitations. Applying the classical modal analysis approach, 
it becomes necessary to introduce time-dependent participation factors. 
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For stationary random multiple support excitation the Pseudo Excitation Method [8] is 

introduced, which includes the main effects of wave passage and site response. 
 

2 GOVERNING EQUATIONS OF MOTION 

The equation of motion of a discretized linear elastic beam subjected to uniform support 
excitation, 

wg1(t) = wg1(t) = ...= wgM (t) = wg(t),  (1) 

reads, compare [1], 

 (2) 

where m, c, k stand for the mass, damping, and stiffniss matrix, respectively. u(t) denotes the 
vector of the nodal transverse deflections wi (t), i = 1,..., N . If the dicretization is extended to 
include also nodal rotations, u(t)  contains additional rotatory degrees of freedom, and the 
corresponding system matrices have to be extended accordingly. The uniform ground 

acceleration is expressed by . The influence vector es represents the displacements (and 

rotations) of the masses resulting from static application of a ground displacement. In case of 
a lumped-mass model, where only nodal deflections (and no rotations) are considered, it is a 

vector with each element equal to unity, es = 1. 
 

 
Figure 1: Multi-span beam and its discretization as lumped mass model. 

 

Contrary, the coupled equations of motion of multi-span beams under  
multiple support excitation can be written formally as, compare [2], 
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(3) 

The displacement vector now contains two parts: 

(a) ut (t )includes the degrees of freedom of the beam, and  
(b) ug(t)contains the components of support excitation. 

 
mg, mgg, cg,cgg , and kg,kgg  are submatrices associated with the support motion, and 

pg(t) is the vector of support forces. 

 
In the following a new, efficient representation of Eq. (3) is derived, which is related to the 

form of Eq. (2). Thus it becomes possible to use formally numerical procedures that are 
common in the field of structures under uniform support excitation. 

3 MODELLING PROCEDURE 

In a first step the individually prescribed support displacements, wgj (t), j = 1,..., M , are 

interpreted as additional degrees of freedom, i.e., uk(t), k = (N +1),..., (N + M ) , see Fig. 2. 
 

 
Figure 2: Free body diagram of the lumped mass model. 

Next, the (singular) stiffness matrix of the complete discretized beam has to be evaluated, 
e.g., using the direct stiffness method by applying static unit deformations, which leads to 

 
 

 

(4) 
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Mass and damping matrices of Eq. (3) are of analogous form. 
In the analysis of such dynamic system it is common to decompose the response into pseudo-
static and dynamic response, 

U(t) =
ut (t)

ug(t)















=
us(t)

ug(t)















+ u(t)

0
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(5) 

The pseudo-static component satisfies the equation 

k kg
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,  

(6) 

 

from which one can solve for us(t) : 

us(t) = −k −1kgug. (7) 

 
Substituting Eqs. (5) and (7) into Eq. (3) results in 

 (8) 

 
The vector of support forces can be expressed as 

 
(9) 

 
Considering that either the damping terms in the effective forcing function peff can be 

neglected when the motions are not uniform, or, 

c= a1k, cg = a1 kg, (10) 

or the damping forces are assumed to be proportional to the relative velocity vector instead to 
the absolute velocity, i.e., 

 

(11) 

hhen Eq. (8) simplifies to 

 (12) 

Note, that in case of a lumped-mass model, mg  is a null matrix, which is assumed in 

following derivations of section 4. 
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4 MODAL EXPANSION TECHNIQUE 

 
In the following Eq. (12) is transformed into a set of uncoupled equations of motions by 

modal superposition, that is assuming 

 
(13) 

where represents the eigenvectors, and yi  stands for the generalized coordinates. Inserting 

Eq. (13) into Eq. (12), pre-multiplying by , and considering the orthogonality conditions as 

well as the assumptions of proportional modes for the damped structure, transforms Eq. (12) 
into 

 
(14) 

where 

 
(15) 

 
In case of deterministic excitation a novel formulation can be applied in order to use 

solution methods that are well known for the special case of uniform support excitation. By 
defining a non-dimensional ground acceleration vector, 

 (16) 

where  represents a reference acceleration component, Eq. (12)is transformed to 

 (17) 

with the time-dependent influence vector 

E(t) = (−k −1kg)Fg(t). (18) 

When comparing Eq. (17) to Eq. (2) of the beam under uniform support excitation it turns 
out that both are of the same dimension and structure. Thus, the modal equations, Eq. (14), 
become 

 (19) 

with the time-dependent participation factor 
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. 
(20) 

5 STATIONARY RANDOM EXCITATION 

5.1 An approximate excitation model 

Under close examination of the seismic analysis of multiply supported bridge structures 
subjected to spatially varying ground motion three main effects have to be taken into account, 
compare [9]: 

(a) Wave passage, considering the difference in the arrival times of the waves at stations 
located apart due to the finite nature of the seismic wave velocities, 

(b) Incoherence, caused due to wave propagation in a heterogeneous medium with 
numerous reflections and refractions, 

(c) Site response, considering local soil conditions. 
 
The present paper introduces an approximate procedure, the Pseudo Excitation Method 

(PEM),see e.g. [8], which includes both the cross-correlation terms between the participant 
modes and between the excitations. 

 
Local effects are treated by assuming different power spectral densities (PSDs) of the 

ground acceleration at each support, 

 (21) 

where it is suggested that the factor λk  can be estimated by the ratio of individual mean 
square values, 

 

(22) 

In the next step, this random excitation is replaced by a pseudo sinusoidal excitation, where 
the first ground node is taken as reference node, 

 (23) 

 
The time delay of the motion of ground node j, when measured relative to the reference 

node 1, reads 

Tj = ugj − ug1( ) / vapp  (24) 

where vapp denotes the surface apparent wave velocity. Finally, the vector of pseudo 

sinusoidal excitation becomes 
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 (25) 

with the non-dimensional complex vector 
 

 
(26) 

 

5.2 Computation of structural response 

The use of PEM makes it possible to determine the PSDs of the dynamic response.  
Thereby the vector of the total response is formulatedby means of a time-harmonic Ansatz, 

 (27) 

 
Solving the equation of motion associated to , compare Eq. (12), 

 (28) 

gives the complex amplitude vector of the dynamic part of nodal displacements 

 (29) 

where the complex transfer matrix is defined as 

H(iω) = k + iω c− ω2m





−1
. 

(30) 

 
The pseudo-static contribution, see Eqs. (7) and Eq. (25), becomes 

 
(31) 

 
Finally the total pseudo structural displacement vector reads 

 
(32) 

 
and the corresponding matrix of PSDs can be expressed as 

 
(33) 

where the superscript * represents the complex conjugate of the vector. 
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6 CONCLUSIONS 

A new formulation for linear elastic multi-span beams under multiple support excitation 
has been proposed in order to reduce the degrees of freedom in a mechanically consistent 
manner. The resulting differential equations are formally identical to those of structures under 
uniform support excitations. Thus, especially in case of deterministic excitation it becomes 
possible to apply only slightly modified procedures for treating vibrations of structures under 
uniform support excitation.Making use of modal analysis, e.g., it becomes necessary to 
introduce time-dependent participation factors. 

For stationary random multiple support excitation an approximate procedure, the Pseudo 
Excitation Method is introduced, which includes the main effects of wave passage and site 
response. 
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