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Cavity Quantum Electro-Dynamics (QED) is the study of quantum light-matter interactions with real or artificial 
atoms coupled to radiation modes. The vast literature on cavity QED systems mainly concerns the weakly 
coupled regime. The opposite limit of extremely strong interactions, where the atom-photon coupling dominates 
over the system’s bare energy scales, is to a large extent still unexplored. This paradigm has been recently 
challenged in circuit QED, where artificial atoms (superconducting two level systems or qubits) can already be 
coupled ultrastrongly [1, 2] to a microwave mode (a LC-resonator) [3-6]. In the ultrastrong coupling (USC) 
regime the physics changes drastically and nontrivial effects like light-matter decoupling [7-8] and different 
degrees of entanglement [8, 9] can occur.  

     In this seminar, after a brief introduction to quantum superconducting circuits, I will consider a prototype 
circuit QED system consisting of multiple artificial atoms coupled to a single mode of a microwave resonator.  
In the USC light and matter decouple and the system exhibits a manifold of non-superradiant ground and low-
energy states with a high degree of entanglement [8]. I will then describe a time-dependent protocol for 
extracting these quantum correlations and converting them into well-defined multipartite entangled states of non-
interacting qubits. The protocol operates in a fast and robust manner, while still being consistent with 
experimental constraints on switching times and typical energy scales encountered in experiments. Ultimately, 
this procedure serves as a probe for otherwise inaccessible correlations in strongly coupled QED systems, and 
shows how such correlations can potentially be exploited as a resource for entanglement-based applications [10].  
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