

Why collapse dynamics imply diffusion and how to use this to test collapse models

15 Febbraio 2023, aula F, DIFC, Via Archirafi 36

Dr. Sandro Donadi Centre for Quantum Materials and Technology School of Mathematics and Physics, Queen's University Belfast s.donadi@gub.ac.uk

Testing the limits of validity of the superposition principle is of crucial importance in the foundations of quantum mechanics and the development of quantum technologies. A way to quantify possible breakdowns of the superposition principle is given by collapse models. These models modify quantum mechanics by introducing a nonlinear interaction with a classical noise that induces collapse in space. The natural way of testing collapse models is through interferometric experiments of systems with large masses, which is challenging. For this reason, non-interferometric experiments were considered. These experiments exploit the fact that the noise responsible for the collapse induces a diffusion in momentum, in principle detectable even in localized systems by performing high precision position measurements. We first give a summary of the bounds on collapse models from non-interferometric experiments. Then we show how the diffusion in momentum is not just a property of collapse models but it is a universal feature of any dynamics inducing collapse in space. This implies that non-interferometric experiments test the quantum superposition principle in a stronger sense than one might suppose.

